<h3>
Answer:</h3>
0.34 mol S
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
11 g S
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of S - 32.07 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
0.343 mol S ≈ 0.34 mol S
They are too small to see with the naked eye
Answer:
Dichloromethane
Explanation:
As we know the atomic number given belongs to following elements, i.e.
Atomic # Element M.Mass
1 Hydrogen 1 g.mol⁻¹
6 Carbon 12 g.mol⁻¹
17 Chlorine 35.5 g.mol⁻¹
Also the molecular formula of Dichloromethane is,
= CH₂Cl₂
Putting molar masses of each element,
= (12)₁ + (1)₂ + (35.5)₂
= 12 + 2 + 71
= 85 g.mol⁺¹
Result:
Hence the only possible structure containing 5 atoms is Dichloromethane.
Answer:
Explanation: Nuclear fusion
Answer:
Mass = 12.276 g
Explanation:
Given data:
Number of molecules of H₂S = 2.16 × 10²³
Mass in gram = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
Number of moles of H₂S:
2.16 × 10²³ molecules × 1 mole /6.022 × 10²³ molecules
0.36 moles
Mass = number of moles × molar mass
Mass = 0.36 mol × 34.1 g/mol
Mass = 12.276 g