Answer:
Ba²⁺(aq) + 2 NO₃⁻(aq) + 2 Rb⁺(aq) + 2 OH⁻(aq) = Ba(OH)₂(s) + 2 Rb⁺(aq) + 2NO₃⁻(aq)
Explanation:
Let's consider the molecular equation between barium nitrate and rubidium hydroxide to produce barium hydroxide and rubidium nitrate.
Ba(NO₃)₂(aq) + 2 RbOH(aq) = Ba(OH)₂(s) + 2 RbNO₃(aq)
The complete ionic equation includes all the ions and the molecular species.
Ba²⁺(aq) + 2 NO₃⁻(aq) + 2 Rb⁺(aq) + 2 OH⁻(aq) = Ba(OH)₂(s) + 2 Rb⁺(aq) + 2NO₃⁻(aq)
Answer:
1= Magnesium
2 = Option 3 = 1s² 2s² 2p⁶
Explanation:
An electrically neutral atom consist of equal number of protons and electrons.
The answer for 1st q is magnesium because the electronic configuration showed twelve number of electrons. The atomic number of magnesium is twelve that's why this configuration is of Mg.
Mg₁₂ = 1s² 2s² 2p⁶ 3s²
The second answer is option three because has atomic number ten and third electronic configuration have ten electrons.
Ne₁₀ = 1s² 2s² 2p⁶
It is stable electronic configuration. Neon is inert because of this electronic configuration. The outer most shell is completely filled.
1s^2 2s^2 2p^6 for the Mg2+ ion.
Answer:
See explanation and image attached
Explanation:
Yttrium has many isotopes, the lowest mass number of Yttrium is 89Y.
Recall that electron capture converts an electron into a proton and then into a neutron with a consequent emission of a neutrino (v).
In electron capture, the mass number of the daughter nucleus remains the same as that of the parent nucleus while the atomic number of the daughter nucleus is less than that of the parent by one unit.
The answer is heterogeneous mixture<span> because the </span>blood<span> cells are physically separate from the </span>blood<span> plasma.</span>