Answer:
Work is measured as the product of force and the displacement in the direction of the force. Work = force × displacement in the direction of the force.
Answer:
7350 J
Explanation:
Gravitational Potential Energy: This is defined as the energy possessed by a body due to it's position in the gravitational field. The S.I unit is Joules(J).
Applying,
E.p = mgh..................... Equation 1
Where E.p = Gravitational potential Energy, m = mass of the object, h = height of the object above the surface of the earth, g = acceleration due to gravity.
Given: m = 2.5 kg, h = 300 m
Constant: g = 9.8 m/s²
Substitute these values into equation 1
E.p = 2.5(300)(9.8)
E.p = 7350 J.
Meselson and Stahl
<u>Explanation:</u>
<u></u>
The classic experiment that supported the semiconservative model of dna replication was performed by Matthew Meselson and Franklin W. Stahl. In this model, the two strands of DNA unwind from each other, and each acts as a template for synthesis of a new, complementary strand. This results in two DNA molecules with one original strand and one new strand. They used E. coli bacteria as a model system.
Answer:
Energy lost due to friction is 22 J
Explanation:
Mass of the ball m = 4 kg
Initially velocity of ball v = 6 m/sec
So kinetic energy of the ball 

Now due to friction velocity decreases to 5 m/sec
Kinetic energy become

Therefore energy lost due to friction = 72 -50 = 22 J
The speed is changing its direction all the time. There
is an acceleration which changes the direction of the speed – that is called
centripetal acceleration. Only uniform linear motions are considered to have no
acceleration.
This is the general formula for acceleration
a = dv/dt
When calculating dv, you should keep in mind the change
in the velocity vector’s direction. You can easily see in a graph that with dt
tending to 0 (so the length of the arc covered is also tending to 0), the difference
between vectors Vf and V0 has a direction which is perpendicular to velocity
(the shorter the arc, the closest the angle is to 90 degrees).
There is a formula (which can be deducted from the
previous formula) which allows you to calculate the acceleration:
a = v^2/r
Let’s talk about the units:
v is in m/s
r is in m
so v^2/r
is in (m/s)^2/m = (m^2/s^2)/m = m/s^2
which is the same unit as dv/dt:
dv/dt = (m/s)/s= m/s^2