Answer:
Work = F * s where s is the distance F moves
Since F is stationary, in this case, "no work" is done by either person
Answer:
v = 2.94 m/s
Explanation:
When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.
Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.
Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means
(1/2)kx^2 = (1/2)mv^2
kx^2 = mv^2
v^2 = (kx^2)/m
v = sqrt((kx^2)/m)
v = x * sqrt(k/m)
v = 0.122 * sqrt(125/0.215) <--- units converted to m and kg
v = 2.94 m/s
Answer:
ΔK = 24 joules.
Explanation:
Δ
Work done on the object
Work is equal to the dot product of force supplied and the displacement of the object.
* Δ
Δ
can be found by subtracting the vectors (7.0, -8.0) and (11.0, -5.0), which is written as Δ
= (11.0 - 7.0, -5.0 - -8.0) which equals (4.0, 3.0).
This gives us
*
=
=
J
You have been given the storm's velocity.
Answer:
The force will be 54.0 units
Explanation:
The magnitude of the electrostatic force between two charged objects is given by Coulomb's Law:

where
k is Coulomb's constant
q1, q2 are the magnitude of the two charges
r is the separation between the two charges
From the equation, we see that the magnitude of the force is directly proportional to the charge of object 2:

In this problem, the initial force between the two objects is
F = 18.0 N
And so, when the charge on object 2 is tripled,

The new electrostatic force will be

So, the force will also triple: since the original force was 18.0 units, the new force will be
