Answer;
- Line segment
Explanation;
"from earth to moon" implies endpoints at both locations and it is thus a line segment
A line extends forever in both directions, a line segment is just part of a line. It has two endpoints, and a ray starts at one point and continues on forever in one direction.
Wavelength = (speed) / (frequency) = (460 m/s) / (230/sec) = <em>2 meters</em>
Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:
A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Answer:
ΔP=20 kg.m/s
Explanation:
Given data
Mass m=0.2 kg
Initial speed Vi=-44.5m/s
Final speed Vf=55.5 m/s
Required
Change in momentum ΔP
Solution
First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

Now we need to find the initial momentum
So

Substitute the given values

Now for final momentum

So the change in momentum is given as:
ΔP=P₂-P₁
![=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s](https://tex.z-dn.net/?f=%3D%5B%2811.1kg.m%2Fs%29-%28-8.9kg.m%2Fs%29%5D%5C%5C%3D20kg.m%2Fs)
ΔP=20 kg.m/s
There's no such thing as "an unbalanced force".
If all of the forces acting on an object all add up to zero, then we say that
<span>the group </span>of forces is balanced. When that happens, the group of forces
has the same effect on the object as if there were no forces on it at all.
An example:
Two people with exactly equal strength are having a tug-of-war. They pull
with equal force in opposite directions. Each person is sweating and straining,
grunting and groaning, and exerting tremendous force. But their forces add up
to zero, and the rope goes nowhere. The <u>group</u> of forces on the rope is balanced.
On the other hand, if one of the offensive linemen is pulling on one end of
the rope, and one of the cheerleaders is pulling on the other end, then their
forces don't add up to zero, because even though they're opposite, they're
not equal. The <u>group</u> of forces is <u>unbalanced</u>, and the rope moves.
A group of forces is either balanced or unbalanced. A single force isn't.
Answer:
U₂ = 20 J
KE₂ = 40 J
v= 12.64 m/s
Explanation:
Given that
H= 12 m
m = 0.5 kg
h= 4 m
The potential energy at position 1
U₁ = m g H
U₁ = 0.5 x 10 x 12 ( take g= 10 m/s²)
U₁ = 60 J
The potential energy at position 2
U₂ = m g h
U ₂= 0.5 x 10 x 4 ( take g= 10 m/s²)
U₂ = 20 J
The kinetic energy at position 1
KE= 0
The kinetic energy at position 2
KE= 1/2 m V²
From energy conservation
U₁+KE₁=U₂+KE₂
By putting the values
60 - 20 = KE₂
KE₂ = 40 J
lets take final velocity is v m/s
KE₂= 1/2 m v²
By putting the values
40 = 1/2 x 0.5 x v²
160 = v²
v= 12.64 m/s