The energy release when dissolving 1 mol of NaOH in water is 445.1 kJ
the mass of NaOH to be dissolved is 32.0 g
The number of NaOH moles in 32.0 g - 32.0 g / 40 g/mol = 0.8 mol
the energy released whilst dissolving 1 mol of NaOH - 445.1 kJ
when dissolving 0.8 mol - the energy released is 445.1 kJ/mol x 0.8 mol
therefore heat released is - 356.08 kJ
answer is -356.08 kJ
Answer:
Explanation:
If the enzyme active site is complementary to the substrate conformation rather than to the transition state, it is unlikely that the reaction will proceed and release a product, because the enzyme-substrate complex will be tightly bound (ΔG will raise).
On the other hand, when the enzyme active site is complementary to the transition state, the substrate will not be tightly bound and will be more prone to be transformed into the product (<u>ΔG will be lowered</u>) and afterward, be released.
The weak interactions (non-covalent bonds) will stabilize the energy of the transition state and reduce its energy, thus lowering the activation energy). If the transition state is stable, it will form more easily and<u> the reaction will be more likely to proceed.</u>
<u />
Answer:
Part A:
Charge is 
Configuration is 
Part B:
Charge is 
Configuration is 
Part C:
Charge is 
Configuration is 
Explanation:
Monatomic ions:
These ions consist of only one atom. If they have more than one atom then they are poly atomic ions.
Examples of Mono Atomic ions: 
Part A:
For P:
Phosphorous (P) has 15 electrons so it require 3 more electrons to stabilize itself.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

Part B:
For Mg:
Magnesium (Mg) has 12 electrons so it requires 2 electrons to lose to achieve stable configuration.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

Part C:
For Se:
Selenium (Se) has 34 electrons and requires two electrons to be stable.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

We need to increase the concentration of common ion first, in order to promote the common ion effect
<h3>What is the Common ion effect?</h3>
It is an effect that suppresses the dissociation of salt due to the addition of another salt having common ions.
For example, a saturated solution of silver chloride in equilibrium has Ag⁺ and Cl⁻ . Sodium Chloride is added to the solution and has a common ion Cl⁻. As a result, the equilibrium shifts to the left to form more silver chloride. Thus, solubility of AgCl decreases.
The Equilibrium law states that if a process is in equilibrium and is subjected to a change
- in temperature,
- pressure,
- the concentration of reactant or product,
then the equilibrium shifts in a particular direction, according to the condition.
Thus, an increase in the concentration of common ion promotes the common ion effect.
Learn more about common ion effect:
brainly.com/question/23684003
#SPJ4
Smaller atoms and stronger bonds promotes greater hardness in minerals.