Answer:
Not knowing the units the tolerance is 0.02. I would presume mm but hopefully your question has more detail.
Explanation:
The tolerance is the portion after the main dimension (+/- 0.02). In our case we have bilateral tolerance since there is tolerance in both directions (positive and negative). If you were building a part the acceptable range would be 2.98 to 3.02 based on the tolerance provided.
Solution :
Given :
Water have quality x = 0.7 (dryness fraction) at around pressure of 200 kPa
The phase diagram is provided below.
a). The phase is a standard mixture.
b). At pressure, p = 200 kPa, T = 
Temperature = 120.21°C
c). Specific volume




d). Specific energy (
)



e). Specific enthalpy 
At 


f). Enthalpy at m = 0.5 kg


= 1022.91 kJ
Answer: 24 pA
Explanation:
As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.
Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵ Ω cm.
The resistance R of a given resistor, is expressed by the following formula:
R = ρ L / A
Replacing by the values for resistivity, L and A, we have
R = 2.1. 10⁵ Ω cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2
R = 2.1. 10¹¹ Ω
Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:
I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA