35g Mg x 1mol / 24g = 840 mol
Answer:
The levels, from smallest to largest, are: molecule, cell, tissue, organ, organ system, organism, population, community, ecosystem, biosphere.
Explanation:
The biological levels of organization of living things arranged from the simplest to most complex are: organelle, cells, tissues, organs, organ systems, organisms, populations, communities, ecosystem, and biosphere.
To dissolve one substance, attractions between solute and solvent particles must be formed, steps involved are:
<h3><u>Formation of a solution:</u></h3>
- A physical process, not a chemical one, takes place when a solute and a solvent combine to produce a solution.
- In other words, by applying the right separation techniques, both the solute and the solvent may be recovered in chemically unaltered forms.
- It is claimed that two substances are entirely miscible when they combine to create a single homogenous phase in all ratios. Water and ethanol mix well, much like different gas combinations do.
- When two substances, like oil and water, are fundamentally insoluble in one another, they are said to be immiscible.
- We have already talked about several examples of gaseous solutions, such as the atmosphere of Earth.
- Thus, a system that has two or more compounds homogeneously (in a single phase) dissolved in it is called a solution. It is the homogenous mixture formed when a solute dissolves in a solvent.
To know more about solutions, refer to:
brainly.com/question/1616939
#SPJ4
Answer:
0.7561 g.
Explanation:
- The hydrogen than can be prepared from Al according to the balanced equation:
<em>2Al + 6HCl → 2AlCl₃ + 3H₂,</em>
It is clear that 2.0 moles of Al react with 6.0 mole of HCl to produce 2.0 moles of AlCl₃ and 3.0 mole of H₂.
- Firstly, we need to calculate the no. of moles of (6.8 g) of Al:
no. of moles of Al = mass/atomic mass = (6.8 g)/(26.98 g/mol) = 0.252 mol.
<em>Using cross multiplication:</em>
2.0 mol of Al produce → 3.0 mol of H₂, from stichiometry.
0.252 mol of Al need to react → ??? mol of H₂.
∴ the no. of moles of H₂ that can be prepared from 6.80 g of aluminum = (3.0 mol)(0.252 mol)/(2.0 mol) = 0.3781 mol.
- Now, we can get the mass of H₂ that can be prepared from 6.80 g of aluminum:
mass of H₂ = (no. of moles)(molar mass) = (0.3781 mol)(2.0 g/mol) = 0.7561 g.
There are 6.022*10^23 molecules in 1 mole of carbon
So how many will moles will be 7.87*20^7?
Let the required number of moles be ‘x’.
1 mole ———6.022*10^23
x moles———7.87*10^7
(Cross multiplication)
x=7.87*10^7/6.022*10^23
Therefore x=1.3*10^-16