Answer:
FADH2 has a lower (less negative) redox potential than NADH does
Explanation:
Flavin Adenine Dinucleotide (FAD) and Nicotinamide Adenine Dinucleotide (NAD) are redox cofactors that play important functions for mitochondrial activity and cellular redox balance. Both coenzymes exist in two forms: an oxidized and a reduced, which are abbreviated as NAD/FAD and NADH/FADH2, respectively. These reduced forms (NADH and FADH2) are produced in the Krebs cycle during respiration. FADH2 has lower redox potential than NADH because FADH2 is only capable of activating 2 proton pumps, while NADH can activate 3 proton pumps during the electron transport chain, thereby FADH2 generates a minor number of ATP molecules than NADH.
Answer:
Mass of water = 41.8 g
Explanation:
Given data:
Mass of water = ?
Change in temperature = 3.0 °C
Specific heat capacity = 4.184 j/g.°C
Heat absorbed = 525 j
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 3.0°C
Now we will put the values in formula.
525 J = m × 4.184 j/g.°C × 3.0°C
525 J = m × 12.552 j/g
m = 525 J/ 12.552 j/g
m = 41.8 g
Answer:
What is the specific heat for the aluminum wire?
0.82
What is the specific heat for the steel wire?
0.47
What is the specific heat for the lead pellets?
0.25
Explanation:
<span>A 18 M solution of an acid that ionizes only slightly in solution would be termed
concentrated and weak. The concentration of the acid is high. The acid which dissociates partially in water is a weak acid.
</span><span>Calculate the [H^+] for the aqueous solution in which [OH^-] is 1 x10^-9. Is this solution acidic, basic or neutral. To determine [H+] use:
1x10^-14 = [OH-][H+]
solve for [H+]
[H+] = 1x10^-14/1x10^-9
= 1x10^-5</span>