O = C = O Straight because there is no solitary electrons on C
Answer:
7.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KClO₃ —> 2KCl + 3O₂
From the balanced equation above,
2 moles of KClO₃ decomposed to produce 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ produced by the decomposition of 5 moles of KClO₃. This can be obtained as follow:
From the balanced equation above,
2 moles of KClO₃ decomposed to produce 3 moles of O₂.
Therefore, 5 moles of KClO₃ will decompose to produce = (5 × 3)/ 2 = 7.5 moles of O₂.
Thus, 7.5 moles of O₂ were obtained from the reaction.
<span>Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass. Dalton also stated that all compounds were composed of combinations of these atoms in defined ratios. He postulated that chemical reactions resulted in the rearrangement of the reacting atom.
</span>
The answer is (3). The reaction that can occur at the anode is oxidation reaction which will lose electrons. So (1) and (2) are not correct. For (4) Fe3+ can not lose electrons again.
Sun emits lights
moon reflects light
lamp emits light
cloud reflects
mirror reflects light
firefly emits light
lightning emits light
tv set emits light