Explanation:
By the second law of Newton we get the relation
F = ma
IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.
<span>The last option.
Plants absorb carbon dioxide from the atmosphere, water from the soil and other nutrients also from the soil - salts containing nitrogene, potassium, sulphur, etc. They use water and carbon dioxide to produce sugar through photosyntesis.
Decomposition is the reaction that converts any organic compound back into inorganic compounds - water, carbon dioxide and salts containing nitrogene, potassium, sulphur, etc. So it's basically the opposite.
So photosyntesis uses carbon dioxide as a reactive and take it from the atmosphere, whereas decomposition generates carbon dioxide as a product and releases it to the atmosphere.</span>