Answer:
C) 40 N/m
Explanation:
If we ASSUME that the spring is un-stretched at the zero cm position
k = F/Δx = 10/0.25 = 40 N/m
Answer:
Explained below
Explanation:
To explain this, let's consider a tennis ball being launched from the top of a very high building.
Now, if the tennis ball is launched horizontally without any upward angle but with an initial velocity of 10 m/s. In this motion, If there is no gravity, the tennis ball would continue in motion at that same speed of 10 m/s in the horizontal direction. However, in reality, gravity causes the tennis ball to accelerate downwards at a rate of 9.8 m/s for every second. This implies that the vertical velocity component is changing at the rate of 9.8 m/s every second.
Thus, after 1 second, horizontal velocity component will remain 10 m/s and vertical component will be 9.8 m/s × 1 = 9.8 m/s downwards.
Also, after 2 seconds, the vertical velocity component will remain 10 m/s, however the vertical component will now be 9.8 × 2 = 19.6 m/s downwards.
Same procedure is repeated as t increases by 1 second.
Answer:
Kinematics
given,
time (t)=100 s, distance (s)=1 km=1000 m
V
b
=10m/s (relative speed r.p to bus)
Velocity (v)=
time
distance
=
100
1000
V
s
= velocity of scooter
V
b
→ Velocity of bus
V=V
s
−V
b
→As we know
10=V
s
−10
20=V
s
V
s
=20 m/s
Velocity with which scooterist
should chase the bus →20 m/s
Explanation:
I Hope you Guys Understood
please mark as Brainliest....
A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
A rocket ship has several engines and thrusters. We can divide its initial movement into 2 parts:
- From t = 0 min to t = 2.0 min, the SRB and the main engines act together and the speed goes from 0 m/s (rest) to 1341 m/s.
- From t = 2.0 min to t = 8.5 min, the main engines alone accelerate the ship form 1341 m/s to 7600 m/s.
We want to know the acceleration in the first part (first 2.0 minutes). We need to consider that:
- The speed increases from 0 m/s to 1341 m/s.
- The time elpased is 2.0 min.
- 1 min = 60 s.
The acceleration of the ship during the first 2.0 minutes is:

A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
Learn more: brainly.com/question/16274121
Answer:
7.0 m
Explanation:
Step 1: Given data
Initial speed of the ball (u): 1.8 m/s
Acceleration (a): 6.1 m/s²
Final speed of the ball (v): 9.4 m/s
Step 2: Calculate the displacement (s) of the ball
The ball is moving with a uniformly accelerated rectilinear motion. We can calculate the displacement using the following suvat equation.
v² = u² + 2 × a × s
s = (v² - u²)/2 × a
s = [(9.4 m/s)² - (1.8 m/s)²]/2 × 6.1 m/s²
s = 7.0 m