1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
levacccp [35]
3 years ago
8

Compare the number of electrons with the number of protons in a charged object.

Physics
1 answer:
svetlana [45]3 years ago
4 0
If the object is negatively charged it means it has gained electron so negatively charged object has more number of electron than proton

If the object is positively charged it means it has lost electron so positively charged object has more number of proton than electron
You might be interested in
A boy throws a baseball onto a roof and it rolls back down and off the roof with a speed of 3.05 m/s. If the roof is pitched at
vekshin1

1) Time in the air: 0.78 s

The motion of the ball is a projectile motion, which consists of two independent motions:

- A horizontal motion with constant horizontal velocity

- A vertical motion with constant downward acceleration of

g=-9.8 m/s^2 (acceleration of gravity)

The initial vertical velocity is

u_y = u sin \theta = (3.05)(sin(-40^{\circ}))=-1.96 m/s

where the negative sign means the direction is downward.

The vertical position of the ball is given by

y(t) = h + u_y t + \frac{1}{2}gt^2

where

h = 4.50 m is the initial heigth of the ball when it starts falling down

The ball reaches the ground when y = 0, so we have:

0 = 4.50 -1.96t-4.9t^2

This is a second-order equation; solving for t, we get

t = -1.18 s

t = 0.78 s

We discard the negative solution since it has no physical meaning, so we can say that the ball spent 0.78 s in the air.

2) Horizontal distance: 1.83 m

For this second part of the problem, we just have to consider the horizontal motion of the ball.

As we said previously, the motion of the ball along the horizontal direction is a uniform motion with constant velocity, which is given by

v_x = u cos \theta = (3.05)(cos (-40.0^{\circ}))=2.34 m/s

where u = 3.05 m/s is the initial speed and \theta the angle of projection.

For a uniform motion, we can use the following relationship between distance covered and velocity:

d=v_x t

and substituting t = 0.78 s, we find the total distance travelled along the horizontal direction by the ball before reaching the ground:

d=(2.34)(0.78)=1.83 m

7 0
3 years ago
A sled of mass m is being pulled horizontally by a constant horizontal force of magnitude F. The coefficient of kinetic friction
rusak2 [61]

I'll bite:

-- Since the sled's mass is 'm', its weight is 'mg'.

-- Since the coefficient of kinetic friction is μk, the force acting opposite to the direction it's sliding is    (μk) times (mg) .

-- If the pulling force is constant 'F', then the horizontal forces on the sled
are 'F' forward and (μk · mg) backwards.

-- The net force on the sled is  (F - μk·mg).
(I regret the visual appearance that's beginning to emerge,
but let's forge onward.)

-- The sled's horizontal acceleration is  (net force) / (mass) = (F - μk·mg) / m.
This could be simplified, but let's not just yet.

-- Starting from rest, the sled moves a distance 's' during time 't'.
We know that  s = 1/2 a t² , and we know what 'a' is.  So we can write

           s = (1/2 t²)  (F - μk·mg) / m    .

Now we have the distance, and the constant force.
The total work is (Force x distance), and the power is (Work / time).
Let's put it together and see how ugly it becomes.  Maybe THEN
it can be simplified.

Work = (Force x distance) =  F x  (1/2 t²)  (F - μk·mg) / m
 
Power = (Work / time) =    <em>F (t/2) (F - μk·mg) / m </em>

Unless I can come up with something a lot simpler, that's the answer.


To simplify and beautify, make the partial fractions out of the
2nd parentheses:
                                   <em> F (t/2) (F/m - μk·m)</em>

I think that's about as far as you can go.  I tried some other presentations,
and didn't find anything that's much simpler.

Five points,ehhh ?


4 0
3 years ago
Read 2 more answers
A real image can be obtained with:
In-s [12.5K]

Answer:

convex lens and a concave mirror

4 0
3 years ago
Read 2 more answers
How come in free fall you feel weightless even though gravity is pulling down on you?
AysviL [449]
Feeling of Weight.

When walking, you feel the weight on your feet, therefore, your brain automatically refers to it as a source of weight.

In the air there is no platform to land on, therefore the brain does not have the conscience to register you getting pulled down. 
7 0
3 years ago
At what wavelength would a star radiate the greatest amount of energy if the star has a surface temperature of 60,000 K?
kompoz [17]

Answer:

\lambda=4.81\times 10^{-8}\ m

Explanation:

We have,

The surface temperature of the star is 60,000 K

It is required to find the wavelength of a star that radiated greatest amount of energy. Wein's displacement law gives the relation between wavelength and temperature such that :

\lambda T=2.89\times 10^{-3}

Here,

\lambda = wavelength

\lambda=\dfrac{2.89\times 10^{-3}}{60000}\\\\\lambda=4.81\times 10^{-8}\ m

So, the wavelength of the star is 4.81\times 10^{-8}\ m.

7 0
3 years ago
Other questions:
  • Answers n = 2 energy level to the n = 4 energy level has a __________ wavelength than the photon absorbed by an electron moving
    6·1 answer
  • If the total charge on a rod of length 0.4 m is 2.6 nc, what is the magnitude of the electric field at a location 3 cm from the
    5·1 answer
  • 1. Which of the following is NOT a vector quantity? (a) Displacement. (b) Energy. (c) Force. (d) Momentum. (e) Velocity.
    11·1 answer
  • From the illustration of the potassium atom, fill in the periodic table selection.
    14·1 answer
  • Neil and Gus are having a competition to see who can launch a marble highest in the air using their own spring. Neil has a firm
    7·1 answer
  • What are three ways in which people use microwaves
    7·2 answers
  • Fibanachi's racio. What is it?
    5·1 answer
  • The north pole of magnet A will __?____ the south pole of magnet B
    9·1 answer
  • Calcula la fuerza magnética de una carga que se desplaza hacia la derecha con una velocidad de 5 X 10 a la 6 metros sobre segund
    5·1 answer
  • A bowler throws a ball down the lane toward the pins. The ball reaches the pins and slowly moves through them, knocking down the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!