The maximum speed of the object under simple harmonic motion is 0.786 m/s.
The given parameters:
- Position of the particle, y = 0.5m sin(πt/2)
<h3>Wave equation for
simple harmonic motion;</h3>
y = A sin(ωt + Ф)
where;
- A is the amplitude = 0.5 m
- ω is the angular speed = π/2
The maximum speed of the object is calculated as follows;

Thus, the maximum speed of the object under simple harmonic motion is 0.786 m/s.
Learn more about simple harmonic motion here: brainly.com/question/17315536
The density of an object can be calculated using the formula Density = Mass/Volume.
Experimental Density:
Density = 153.8g / 20.00 cm^3
Density = 7.69g/cm^3
Percent error equation:
% Error = | Theoretical Value - Experimental Value|/Theoretical Value * 100
% Error = | 7.87g/cm^3 - 7.69g/cm^3|/7.87g/cm^3 * 100
% Error = 2.29%
Therefore a is the correct answer.
Answer:
6.5454 m
Explanation:
Let the distance from the wire carrying 3 A current is x
Then the distance from the the carrying current 8 A is 24-x
We know that magnetic field due to long wire is given by
It is given that magnetic field is zero at some distance so

Here
So 
Answer:
5. -24 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity.
The S.I unit of acceleration is m/s².
mathematically,
a = dv/dt ............................ Equation 1
Where a = acceleration, dv/dt = is the differentiation of velocity with respect to time.
But
v = dx(t)/dt
Where,
x(t) = 27t-4.0t³...................... Equation 2
Therefore, differentiating equation 2 with respect to time.
v = dx(t)/dt = 27-12t²............. Equation 3.
Also differentiating equation 3 with respect to time,
a = dv/dt = -24t
a = -24t .................... Equation 4
from the question,
At the end of 1.0 s,
a = -24(1)
a = -24 m/s².
Thus the acceleration = -24 m/s²
The right option is 5. -24 m/s²