No, aluminum has a density near 2.7 g/cm^3
<span>7.8 g/cm^3 is near the density of iron (or in the case of a fork, steel).
this is it
</span>
Answer:W = 1.23×10^-6BTU
Explanation: Work = Surface tension × (A1 - A2)
W= Surface tension × 3.142 ×(D1^2 - D2^2)
Where A1= Initial surface area
A2= final surface area
Given:
D1=0.5 inches , D2= 3 inches
D1= 0.5 × (1ft/12inches)
D1= 0.0417 ft
D2= 3 ×(1ft/12inches)
D2= 0.25ft
Surface tension = 0.005lb ft^-1
W = [(0.25)^2 - (0.0417)^2]
W = 954 ×10^6lbf ft × ( 1BTU/778lbf ft)
W = 1.23×10^-6BTU
In the blank should go of friction.
The coefficient of static friction is 0.234.
Answer:
Explanation:
Frictional force is equal to the product of coefficient of friction and normal force acting on any object.
So here the mass of the object is given as 2 kg, so the normal force will be acting under the influence of acceleration due to gravity.
Normal force = mass * acceleration due to gravity
Normal force = 2 * 9.8 = 19.6 N.
And the frictional force is given as 4.6 N, then

Coefficient of static friction = 4.6 N / 19.6 N = 0.234
So the coefficient of static friction is 0.234.
The diagram is in the picture attached.
Options are:
A) 32 °C
B) 70 °C
C) 92 °C
D) 100 °C
In order to find the value required, you need to look at the diagram and follow these steps:
1) search for the value of 70 kPa on the y-axis;
2) move on a horizontal line towards the right until you reach the line D;
3) move on a vertical line down, towards the x-axis;
4) read at what value of °C you are at.
Doing so, you can see that you are at a value a little bit above 90 °C (see picture).
Hence, the correct answer is
C) 92°C.