At 8:00 pm, the velocity of the storm is 55 mi northeast. Assuming that the direction is exactly northeast, the angle is 45°
At 11:00 pm, the velocity is 75 mi north. The angle is 90°
In vector form
55 ∠ 45°
and
75 ∠ 90°
The magnitude and direction of the average velocity is
(55 ∠ 45° + 75 ∠ 90° ) / 3
Answer:
The average current that this cell phone draws when turned on is 0.451 A.
Explanation:
Given;
voltage of the phone, V = 3.7 V
electrical energy of the phone battery, E = 3.15 x 10⁴ J
duration of battery energy, t = 5.25 h
The power the cell phone draws when turned on, is the rate of energy consumption, and this is calculated as follows;

where;
P is power in watts
E is energy in Joules
t is time in seconds

The average current that this cell phone draws when turned on:
P = IV

Therefore, the average current that this cell phone draws when turned on is 0.451 A.
Answer:
(a) Angular velocity will be 125.6 rad/sec
(b) Linear velocity will be 144.44 m /sec
(c) Centripetal acceleration = 1849.3031 g
Explanation:
We have given diameter d = 2.30 m
So radius r = 
(a) Speed is given as 1200 rev/min
We know that angular velocity is given by 
(b) Linear speed is given by 
(c) Centripetal acceleration is given by
We know that 
So 
Answer: Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source. You can find total resistance in a Parallel circuit with the following formula: 1/Rt = 1/R1 + 1/R2 + 1/R3 +.
Hope this helps!
Answer:
Explanation:
Let i be the angle of incidence and r be the angle of refraction .
From the figure
Tan ( 90 - i ) = 2.5 / 8
cot i = 2.5 / 8
Tan i = 8 / 2.5 = 3.2
i = 72.65°
From snell's law
sini / sin r = refractive index
sin 72.65 / sinr = 1.333
sin r = .9545 / 1.333
= .72
r = 46⁰
From the figure
Tan r = d / 4
Tan 46 = d /4
d = 4 x Tan 46
= 4 x 1.0355
=4.14 m .