Answer:
The kinetic energy correction factor the depends on the shape of the cross section of the pipe and the velocity distribution.
Explanation:
The kinetic energy correction factor take into account that the velocity distribution over the pipe cross section is not uniform. In that case, neither the pressure nor the temperature are involving and as we can notice, the velocity distribution depends only on the shape of the cross section.
Answer:
Ig =7.2 +j9.599
Explanation: Check the attachment
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:





By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
(A) Maximum voltage will be equal to 333.194 volt
(B) Current will be leading by an angle 54.70
Explanation:
We have given maximum current in the circuit 
Inductance of the inductor 
Capacitance 
Frequency is given f = 44 Hz
Resistance R = 500 ohm
Inductive reactance will be 
Capacitive reactance will be equal to 
Impedance of the circuit will be 
So maximum voltage will be 
(B) Phase difference will be given as 
So current will be leading by an angle 54.70
Answer:
1200KJ
Explanation:
The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.
P (rotor-loss) = 3 x K.E
P = 3 x 300 = 900 KJ
After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;
KE = 300 KJ
Since it is in opposite direction, it will also add up to rotor loss
P ( rotor loss ) = 900 + 300 = 1200 KJ