-- Looking at the dots casually, they look green because they absorb all other
colors of light, and only green light is left to proceed to your eyes. (In order for
this to work, there has to be some green in the light shining on the dots.
Daylight and most light bulbs work fine.)
-- The filter looks red because it absorbs all other colors of light, and only
the red light is left to pass through the filter and come out on the other side.
-- When the green light from the dots hits the red filter, it's absorbed in the
filter, and there's no light left to come out on the other side.
If you're looking through the filter at the dots, they look <em>black</em>.
True, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.
<h3>Relationship between dielectric material and electric field</h3>
The electric field in a capacitor separates the negative and positive charges in the dielectric material, this causes an attractive force between each plate and the dielectric.
The dielectric material can store electric energy due to its polarization in the presence of external electric field, which causes the positive charge to store on one electrode and negative charge on the other.
Thus, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.
Learn more about dielectric material here: brainly.com/question/17090590
Use v = u + at
Message me if you need more help