1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inn [45]
3 years ago
9

Why does the sun have less gravitational pull on planet far away like Pluto?

Physics
1 answer:
blondinia [14]3 years ago
4 0

Answer:

Because the planet is far away from the sun

Explanation:

The closer the planet is to the Sun, the greater the pull of the Sun's gravity, and the faster the planet orbits.

While, over here the Pluto is very far away from the Sun so it will have very little gravitational  pull and still keeps revolving around the Sun

<h2><u><em>Pls Mark Brainliest</em></u></h2>
You might be interested in
How is energy conserved in a transformation?
irina [24]
As the water plunges, its velocity increases. Its potential energy<span> becomes kinetic</span>energy<span>. The law of conservation of </span>energy<span> states that when one form of </span>energy<span> is</span>transformed<span> to another, no </span>energy<span> is destroyed in the process. ... So the total amount of </span>energy<span> is the same before and after any </span>transformation<span>.

hope it helps

</span>
5 0
3 years ago
The average intensity of sunlight at the top of the earth's atmosphere in 1390 w/m2. what is the maximum energy that a 34-m x 46
slavikrds [6]
Panel surface area =34m×46m=1,564m^2
total power =1564m^2×1390w/m^2
=2173960watts
now you must calculate total energy.
Energy = power×Time
However time must be in seconds so we multiply 2hrs×60min×60s=7200seconds
7200s×2173960w =15,652,512,000 joules of energy
7 0
3 years ago
A battery charger is connected to a dead battery and delivers a current of 3.5 a for 4 hours, keeping the voltage across the bat
oksano4ka [1.4K]
The power delivered is equal to the product between the voltage V and the current I:
P=VI=(16 V)(3.5 A)=56 W

This power is delivered for a total time of t=4h=4 \cdot 3600 s = 14400 s, so the total energy delivered to the battery is
E=Pt = (56 W)(14400 s)=806400 J=806.4 kJ
5 0
3 years ago
A space shuttle takes off from FL and circles Earth several times, finally landing in CA. While the shuttle is in flight, a phot
mixer [17]

Answer:

Both the astronauts and photographer have the same displacement

Explanation:

Displacement is the minimum distance between two point. The initial point of both the astronauts and the photographer was Florida and the final point was California. So, the minimum distance for both of the astronauts and the photographer would be the distance between Florida and California would be the same.

Hence, both the astronauts and photographer will have the same displacement.

3 0
3 years ago
A mass is oscillating with amplitude A at the end of a spring.
Dmitry_Shevchenko [17]

A) x=\pm \frac{A}{2\sqrt{2}}

The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):

E=\frac{1}{2}kA^2 (1)

where k is the spring constant.

The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:

E=U+K=\frac{1}{2}kx^2+\frac{1}{2}mv^2 (2)

where x is the displacement, m the mass, and v the speed.

We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

U=\frac{1}{3}K

Using (2) we can rewrite this as

U=\frac{1}{3}(E-U)=\frac{1}{3}E-\frac{1}{3}U\\U=\frac{E}{4}

And using (1), we find

U=\frac{E}{4}=\frac{\frac{1}{2}kA^2}{4}=\frac{1}{8}kA^2

Substituting U=\frac{1}{2}kx^2 into the last equation, we find the value of x:

\frac{1}{2}kx^2=\frac{1}{8}kA^2\\x=\pm \frac{A}{2\sqrt{2}}

B) x=\pm \frac{3}{\sqrt{10}}A

In this case, the kinetic energy is 1/10 of the total energy:

K=\frac{1}{10}E

Since we have

K=E-U

we can write

E-U=\frac{1}{10}E\\U=\frac{9}{10}E

And so we find:

\frac{1}{2}kx^2 = \frac{9}{10}(\frac{1}{2}kA^2)=\frac{9}{20}kA^2\\x^2 = \frac{9}{10}A^2\\x=\pm \frac{3}{\sqrt{10}}A

3 0
3 years ago
Other questions:
  • A horizontal pull A pulls two wagons over a horizontal frictionless floor, the first wagon is 500N, the second is 2000 N. The te
    12·1 answer
  • A 240 cm length of string has a mass of 2.5 g. It is stretched with a tension of 8.0 N between fixed supports. (a) What is the w
    14·1 answer
  • Suppose earth's mass increased but earth's diameter didn't change. Describe how the gravitational force between Earth and the ob
    13·1 answer
  • How many atoms of Oxygen (O) are in 3CO2
    6·1 answer
  • A car moving at 16.0 m/s, passes an observer while its horn is pressed. the velocity of sound is 343 m/s and the frequency of th
    12·1 answer
  • Which of the following is the type of rock
    5·1 answer
  • Helpp
    13·1 answer
  • The law of inertia states that a moving object will:.
    7·1 answer
  • Which best describes the difference between internal and thermal energy?
    14·1 answer
  • hen approaching a curve, it is best to: A. Search for possible collision traps and escape paths B. Stay close to the centerline
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!