The right answer is D - mass.
The Great Oxidation Event (GOE), sometimes also called the Great Oxygenation Event, Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust,[2] or Oxygen Revolution, was a time period when the Earth's atmosphere and the shallow ocean first experienced a rise in oxygen, approximately 2.4 billion years ago (2.4 Ga) to 2.1–2.0 Ga during the Paleoproterozoic era.[3] Geological, isotopic, and chemical evidence suggests that biologically produced molecular oxygen (dioxygen, O2) started to accumulate in Earth's atmosphere and changed Earth's atmosphere from a weakly reducing atmosphere to an oxidizing atmosphere,[4] causing many existing species on Earth to die out.[5] The cyanobacteria producing the oxygen caused the event which enabled the subsequent development of multicellular forms.
We are given –
- Mass of
is 57.1 g and we are asked to find number of moles present in 57.1 g of 






____________________
Now,Let's calculate the number of moles present in 57.1 g of 






__________________________________
Explanation:
a) Using Beer-Lambert's law :
Formula used :

where,
A = absorbance of solution = 0.945
c = concentration of solution = ?
l = length of the cell = 1.20 cm
= molar absorptivity of this solution =


(
)
14.16 μM is the molarity of the red dye solution at the optimal wavelength 519nm and absorbance value 0.945.
b) 
1 L of solution contains
moles of red dye.
Mass of
moles of red dye:



c) In order to dilute red dye solution by 5 times, we will need to add 1 L of water to solution of given concentration.
Concentration of red dye solution = 
Concentration of red solution after dilution = c'



The final concentration of the diluted solution is 
Same things but with different numbers of neutrons in nuclei