It depends on the process.
Like for example if the process is isothermal(temperature is constant), you can use,
PV = constant or P1V1 = P2V2 where P1V1 are initial conditions and P2V2 are final.
For adiabatic process,
PV^gamma = constant or P1V1 ^gamma = P2V2 ^gamma.
where gamma = Cp
------
Cv
Cp = specific heat at constant pressure and Cv = specific at constant volume.
Value of Gamma will be given in question.
Hope this helps!
Scientists should control most possible variables in experiments to get the most valid and correct data. If many variables are included in experiments it is more difficult to interpret what is causing a different outcome.
Answer:
The chemist would require to use 43.43 grams.
Explanation:
In order to solve this problem we need to know<u> how much do 0.550 moles of selenium weigh</u>. To do that we use selenium's<em> molar mass </em>and multiply it by the given number of moles:
- 0.550 mol * 78.96 g/mol = 43.43 g
The chemist would require to use 43.43 grams.
Answer:
See explaination
Explanation:
The mole balance for a constant-volume batch reactor is given such as, For a first-order isothermal reaction, the time to reach a given conversion is the same for constant-pressure and constant-volume reactors. Also, the time is the same for a reaction of any order if there is no change in the number of moles.
Please kindly check attachment for the step by step solution of the given problem.
1. She would want a balanced force so she doesn't fall but, well, keep her balance.
2. Frictional force because when an object slows down it's because a higher amount of friction is acting on it.
3. It would be magnitude and direction because is like the size of the object and they need to know how much force it will take to move it.
4. Is the same as 3...
5. A push and a pull are a force.
I hope this helps!