1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
CaHeK987 [17]
3 years ago
12

A projectile is launched

Physics
1 answer:
Flauer [41]3 years ago
4 0

The vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.

The given parameters;

  • initial horizontal velocity, vₓ = 16 m/s
  • initial vertical velocity, v_y =0
  • time interval 1 seconds

The components of the velocity can be horizontal or vertical velocity.

The vertical component of the velocity is affected by acceleration due to gravity while the horizontal component of the velocity is not affected by gravity.

The vertical component of the velocity is calculated as;

v_y = v_0_y -gt\\\\v_y = 0 - (1\times 9.8)\\\\v_y = -9.8 \ m/s

The horizontal component of the velocity is constant since it is not affected by gravity.

The horizontal component of the velocity = 16 m/s

Thus, the vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.

Learn more here:brainly.com/question/20349275

You might be interested in
Ben Rushin is waiting at a stop light. Turns green, ben accelerated from rest at a rate of 6.00 m/s squared for a time of 4.10 s
Lera25 [3.4K]
D= vt +.5at^2
since he started at rest, v (initial velocity) is 0
so d=.5at^2
d = .5 (6m/s^2) (4.1s)^2 
then put that into a calculator.

4 0
3 years ago
Cars A and B are racing each other along the same straight road in the following manner: Car A has a head start and is a distanc
4vir4ik [10]

The question is incomplete. Here is the complete question.

Cars A nad B are racing each other along the same straight road in the following manner: Car A has a head start and is a distance D_{A} beyond the starting line at t = 0. The starting line is at x = 0. Car A travels at a constant speed v_{A}. Car B starts at the starting line but has a better engine than Car A and thus Car B travels at a constant speed v_{B}, which is greater than v_{A}.

Part A: How long after Car B started the race will Car B catch up with Car A? Express the time in terms of given quantities.

Part B: How far from Car B's starting line will the cars be when Car B passes Car A? Express your answer in terms of known quantities.

Answer: Part A: t=\frac{D_{A}}{v_{B}-v_{A}}

              Part B: x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Explanation: First, let's write an equation of motion for each car.

Both cars travels with constant speed. So, they are an uniform rectilinear motion and its position equation is of the form:

x=x_{0}+vt

where

x_{0} is initial position

v is velocity

t is time

Car A started the race at a distance. So at t = 0, initial position is D_{A}.

The equation will be:

x_{A}=D_{A}+v_{A}t

Car B started at the starting line. So, its equation is

x_{B}=v_{B}t

Part A: When they meet, both car are at "the same position":

D_{A}+v_{A}t=v_{B}t

v_{B}t-v_{A}t=D_{A}

t(v_{B}-v_{A})=D_{A}

t=\frac{D_{A}}{v_{B}-v_{A}}

Car B meet with Car A after t=\frac{D_{A}}{v_{B}-v_{A}} units of time.

Part B: With the meeting time, we can determine the position they will be:

x_{B}=v_{B}(\frac{D_{A}}{v_{B}-v_{A}} )

x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Since Car B started at the starting line, the distance Car B will be when it passes Car A is x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}} units of distance.

5 0
3 years ago
A student is trying to calculate the density of a can. He already knows the mass, but he needs to determine the volume as well.
elena-14-01-66 [18.8K]

Answer:

V=Bh

Explanation:

B h is used for rectangular solids and cylinders

6 0
3 years ago
What are the three psychological processes of memory?
MariettaO [177]
1. Encoding Information
2. Storing Information
3. Retrieval Information
6 0
3 years ago
Read 2 more answers
2.
saul85 [17]

Answer:

<u>B</u>

Explanation:

Planets have different year lengths because it depends how far they revolve from a celestial body. Each planet has its own orbital period. Planets closer to the star will have a lower orbital period compared to the ones that lie far away from it.

4 0
1 year ago
Read 2 more answers
Other questions:
  • Hypothetically, suppose our resistance in part I was 200 ohms. Quantitatively calculate the impact of a 1 Ohm ammeter resistance
    11·1 answer
  • Which element is stable and nonreactive?
    10·1 answer
  • A girl weighing 600 N steps on a bathroom scale that contains a stiff spring. In equilibrium, the spring is compressed 1.0 cm un
    15·1 answer
  • What is matter? explain and give example
    14·1 answer
  • A teen gave up smoking to improve her lifestyle what is another way to state what she did ?
    5·1 answer
  • How do exited atoms give off light
    14·1 answer
  • Calculate the force applied (in newtons) if a pressure of 2000Pa is acting on an area of 3m2.
    10·1 answer
  • Write the maximum number of electrons that can be accommodated in the s,p,d,f subshells​
    11·1 answer
  • (a) Calculate the height of a cliff if it takes 2.45 s for a rock to hit the ground when thrown straight up from the cliff with
    6·1 answer
  • An object of mass M is placed on a disk that can rotate. One end of a string is tied to the object while the other end of the st
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!