Answer:In regards to writing the formula, we know that magnesium has a charge of 1+ and sulfate, SO4, has a charge of 1-. Sulfate is a polyatomic ion so the charge of the whole thing is (SO4)1-. When you combine them you end up with MgSO4 and the "heptahydrate" is seven water molecules.
Explanation:
Explanation:
As it is known that in solids, molecules are held together because of strong intermolecular forces of attraction. As a result, they are held together and have definite shape and volume.
Whereas in liquids, molecules are not held so strongly as they are in solids. Hence, they move from their initial position and they do not have definite shape but they have definite volume.
Liquids obtain the shape of container in which they are kept.
In gases, molecules are held together by weak intermolecular forces. As a result, they move far apart from each other and occupy the space of a container or vessel in which they are placed.
The physical state (at room temperature) of the following are determined as follows:
(a) Helium in a toy balloon : Helium at room temperature exists as a gas. So, when helium is present in a toy balloon then it acquires the volume of toy balloon.
(b) Mercury in a thermometer : Mercury at room temperature exists as a liquid. When it is placed in a thermometer then volume of mercury does not get affected.
(c) Soup in a bowl : Since, soup is a liquid. Hence, its volume will not change according to the volume of container.
Answer:
No precipitate is formed.
Explanation:
Hello,
In this case, given the dissociation reaction of magnesium fluoride:

And the undergoing chemical reaction:

We need to compute the yielded moles of magnesium fluoride, but first we need to identify the limiting reactant for which we compute the available moles of magnesium chloride:

Next, the moles of magnesium chloride consumed by the sodium fluoride:

Thus, less moles are consumed by the NaF, for which the moles of formed magnesium fluoride are:

Next, since the magnesium fluoride to magnesium and fluoride ions is in a 1:1 and 1:2 molar ratio, the concentrations of such ions are:
![[Mg^{2+}]=\frac{3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =3.75x10^{-4}M](https://tex.z-dn.net/?f=%5BMg%5E%7B2%2B%7D%5D%3D%5Cfrac%7B3x10%5E%7B-4%7DmolMg%5E%7B%2B2%7D%7D%7B%280.3%2B0.5%29L%7D%20%3D3.75x10%5E%7B-4%7DM)
![[F^-]=\frac{2*3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =7.5x10^{-4}M](https://tex.z-dn.net/?f=%5BF%5E-%5D%3D%5Cfrac%7B2%2A3x10%5E%7B-4%7DmolMg%5E%7B%2B2%7D%7D%7B%280.3%2B0.5%29L%7D%20%3D7.5x10%5E%7B-4%7DM)
Thereby, the reaction quotient is:

In such a way, since Q<Ksp we say that the ions tend to be formed, so no precipitate is formed.
Regards.
The answer is <span>(3) 3 × 12.4 hours
</span>
To calculate this, we will use two equations:


where:
<span>n - number of half-lives
</span>x - remained amount of the sample, in decimals
<span>

- half-life length
</span>t - total time elapsed.
First, we have to calculate x and n. x is <span>remained amount of the sample, so if at the beginning were 16 grams of potassium-42, and now it remained 2 grams, then x is:
2 grams : x % = 16 grams : 100 %
x = 2 grams </span>× 100 percent ÷ 16 grams
x = 12.5% = 0.125
Thus:
<span>

</span>




It is known that the half-life of potassium-42 is 12.36 ≈ 12.4 hours.
Thus:
<span>

</span><span>

</span>

Therefore, it must elapse 3 × 12.4 hours <span>before 16 grams of potassium-42 decays, leaving 2 grams of the original isotope</span>
Answer:
A.The potential energy increases because the charges have a greater repulsion.
Explanation: Thanks to Mwilliams55513 for the help :}