Answer:
Choice a. 1 kg, assuming that all other forces on the object (if any) are balanced.
Explanation:
By Newton's Second Law,
,
where
- is the acceleration of the object in ,
- is the net force on the object in Newtons, and
- is the mass of the object in kilograms.
As a result,
.
Assume that all other forces on this object are balanced. The net force on the object will be . The net force is constant. Acceleration should also be constant and the same as the average acceleration in the two seconds.
<h3>What is the
average acceleration of this object?</h3>
.
.
<h3>Apply Newton's Second Law to find the mass of the object.</h3>
.
1) use energy from food
2) get rid of wastes
3) maintain
Answer:
13.7m
Explanation:
Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.
After the push
Where is the mass of the astronaut, is the mass of the satellite, is the speed of the satellite. We can calculate the speed of the astronaut:
So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be
d = vt = 1.83 * 7.5 = 13.7 m
Explanation:
700N right
to get the net force
you gotta let one direction be the negative ( the smaller force)
so the total force towards the left is 100N ( 60 + 40= 100)
which is smaller than the right force which is 800 N so you let 100 N be negative
so without even calculating , you can know that it will be moving towards the right because right force > left force
your add both forces ( remember 100 N is negative)
so 800N + ( - 100N)
= 700N
towards the right
hope this helps
this is just one method that helped me understand
please mark it brainliest