Answer:
0.00016 kg
Explanation:
Given:
Power = P = 1.2 × 10⁹ Watts
Power = work done / Time
efficiency = 0.30
Input power = 1.2 × 10⁹ / 0.30 = 4 × 10⁹ W
Energy = 4 × 10⁹ x 60 x 60 = 1.44 x 10¹³ joules
E = m c² , where c is the speed of light and m is the mass.
⇒ mass = m = E / c² = (1.44 x 10¹³) / (3 × 10⁸ )²
= 0.00016 kg
Since my givens are x = .550m [Vsub0] = unknown
[Asubx] = =9.80
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0]
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0])
Vsubx is the final velocity, which at the max height is 0, and Xsub0 is just 0 as that's where it starts so I just plug the rest in
0^2 = [Vsub0x]^2 + 2[-9.80]*(.550)
0 = [Vsub0x]^2 -10.78
10.78 = [Vsub0x]^2
Sqrt(10.78) = 3.28 m/s
Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Answer:
The highest vertical position is where your maximum potential energy lies. At the highest altitude point of course ! This is when the kinetic energy is only due to horizontal motion (since the vertical component reaches zero).
Explanation:
i looked it up ok