Answer: 
Explanation: For the given reaction:
![Kc=\frac{[Zn^+^2]}{[Ag^+]^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BZn%5E%2B%5E2%5D%7D%7B%5BAg%5E%2B%5D%5E2%7D)
Concentrations of the ions are not given so we need to think about another way to calculate Kc.
We can calculate the free energy change using the standard cell potential as:

can be calculated using standard reduction potentials.
Standard reduction potential for zinc is -0.76 V and for silver, it is +0.78 V.
= 
Reduction takes place at anode and oxidation at cathode. As silver is reduced, it is cathode. Zinc is oxidized and so it is anode.
= 0.78 V - (-0.76 V)
= 0.78 V + 0.76 V
= 1.54 V
Value of n is two as two moles of electrons are transferred in the cell reaction F is Faraday constant and its value is 96485 C/mol of electron .

= -297173.8 J
Now we can calculate Kc using the formula:

T = 25+273 = 298 K
R = 
--297173.8 = -(8.314*298)lnKc
297173.8 = 2477.572*lnKc

lnKc = 119.946


Answer:
The molar mass of the gas
Explanation:
The ideal gas equation of state is:
PV = nRT
If we measure the volume (V), the pressure (P), and the temperature (T), we use the gas constant R (0.082 L.atm/K.mol) to calculate n (moles of gas):
n = PV/RT
Then, we can divide the mass into the number of moles to calculate the molar mass of the gas:
molar mass = mass/n