31.3m/s
Explanation:
Given parameters:
Mass of rock = 40kg
Height of cliff = 50m
Unknown:
Speed of rock when it hits ground = ?
Solution:
We are going to use the appropriate motion equation to solve this problem
The rock is falling with the aid of gravitational force. The force is causing it to accelerate with an amount of velocity.
Using;
V² = U² + 2gH
V = unknown velocity
U = initial velocity = O
g = acceleration due to gravity = 9.8m/s²
H = height of fall
since the initial velocity of the bodyg is 0
V² = 2gH
V= √2gH = √2 x 9.8 x 50 = 31.3m/s
learn more:
Velocity brainly.com/question/4460262
#learnwithBrainly
Answer:
The answer to your question is m₂ = 38.5 kg
Explanation:
Data
distance = d = 2.1 x 10⁻¹ m
Force = 3.2 x 10⁻⁶ N
m₁ = 55 kg
m₂ = ?
G = 6.67 x 10 ⁻¹¹ Nm²/kg²
Process
1.- To solve this problem use Newton's law of Universal Gravitation.
F = G m₁m₂ / r²
-Solve for m₂
m₂ = Fr² / Gm₁
2.- Substitution
m₂ = (3.2 x 10⁻⁶)(2.1 x 10⁻¹)² / (6.67 x 10⁻¹¹)(55)
3.- Simplification
m₂ = 1.411 x 10⁻⁷ / 3.669 x 10⁻⁹
4.- Result
m₂ = 38.5 kg
Answer:
Inertia is an object's tendency to keep moving in a straight line unless acted on by an outside force. Centripetal force causes an object to constantly change direction, so the combination of centripetal force and inertia causes an object to move in a circle. Hope it helps and your cute by the way
Explanation:
Hi,
<u>The man on the ground in standing position has more pressure</u>. This is because when he stands, only his legs are in contact with the ground. While lying, his body is more in contact with the ground, therefore, he exerts less pressure.
To the point, a man standing position on the ground had more pressure.
More is the area of contact, less is the pressure efforted.
Thank you...