Answer:
The speed of space station floor is 49.49 m/s.
Explanation:
Given that,
Mass of astronaut = 56 kg
Radius = 250 m
We need to calculate the speed of space station floor
Using centripetal force and newton's second law




Where, v = speed of space station floor
r = radius
g = acceleration due to gravity
Put the value into the formula


Hence, The speed of space station floor is 49.49 m/s.
I believe the correct answer is D
(a) The momentum of the proton is determined as 5.17 x 10⁻¹⁸ kgm/s.
(b) The speed of the proton is determined as 3.1 x 10⁹ m/s.
<h3>
Momentum of the proton</h3>
The momentum of the proton is calculated as follows;
K.E = ¹/₂mv²
where;
- m is mass of proton = 1.67 x 10⁻²⁷ kg
- v is speed of the proton = ?
<h3>Speed of the proton</h3>
v² = 2K.E/m
v² = (2 x 50 x 10⁹ x 1.602 x 10⁻¹⁹ J)/(1.67 x 10⁻²⁷)
v² = 9.6 x 10¹⁸
v = 3.1 x 10⁹ m/s
<h3>Momentum of the proton</h3>
P = mv = (1.67 x10⁻²⁷ x 3.1 x 10⁹) = 5.17 x 10⁻¹⁸ kgm/s
Learn more about momentum here: brainly.com/question/7538238
#SPJ4