Answer:
Explanation:
The path length difference = extra distance traveled
The destructive interference condition is:

where m =0,1, 2,3........
So, ←
![\Delta d = (m+1/2)\lamb da9/tex]so [tex]\Delta d = \frac{\lambda}{2}](https://tex.z-dn.net/?f=%5CDelta%20d%20%3D%20%28m%2B1%2F2%29%5Clamb%20da9%2Ftex%5D%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3Eso%20%3C%2Fstrong%3E%5Btex%5D%5CDelta%20d%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%7D)
⇒ λ = 2Δd = 2×10 = 20
Answer:
1. a) 72 N.
2. a) 2 m/s².
Explanation:
Given the following data;
1. Mass = 90kg
Acceleration = 0.8 m/s²
To find the force;
Force = mass * acceleration
Force = 90 * 0.8
Force = 72 Newton.
2. Mass = 50kg
Force = 100N
To find the magnitude of acceleration;
Acceleration = force/mass
Acceleration = 100/50
Acceleration = 2 m/s²
Answer:
5.66 × 10⁻²³ m/s
Explanation:
If i assume i can jump as high as h = 2 m, my initial velocity is gotten from v² = u² + 2gh. Since my final velocity v = 0, u = √2gh = √(2 × 9.8 × 2) = √39.2 m/s = 6.26 m/s.
Since initial momentum = final momentum,
mv₁ + MV₁ = mv₂ + MV₂ where m, M, v₁, V₁, v₂ and V₂ are my mass, mass of earth, my initial velocity, earth's initial velocity, my final velocity and earth's final velocity respectively.
My mass m = 54 kg, M = 5.972 × 10²⁴ kg, v₁ = 6.26 m/s, V₁ = 0, v₂ = 0 and V₂ = ?
So mv₁ + M × 0 = m × 0 + MV₂
mv₁ = MV₂
V₂ = mv₁/M = 54kg × 6.26 m/s/5.972 × 10²⁴ kg = 338.093/5.972 × 10²⁴ = 56.61 × 10⁻²⁴ m/s = 5.661 × 10⁻²³ m/s ≅ 5.66 × 10⁻²³ m/s
<span>When the fuel of the rocket is consumed, the acceleration would be zero. However, at this phase the rocket would still be going up until all the forces of gravity would dominate and change the direction of the rocket. We need to calculate two distances, one from the ground until the point where the fuel is consumed and from that point to the point where the gravity would change the direction.
Given:
a = 86 m/s^2
t = 1.7 s
Solution:
d = vi (t) + 0.5 (a) (t^2)
d = (0) (1.7) + 0.5 (86) (1.7)^2
d = 124.27 m
vf = vi + at
vf = 0 + 86 (1.7)
vf = 146.2 m/s (velocity when the fuel is consumed completely)
Then, we calculate the time it takes until it reaches the maximum height.
vf = vi + at
0 = 146.2 + (-9.8) (t)
t = 14.92 s
Then, the second distance
d= vi (t) + 0.5 (a) (t^2)
d = 146.2 (14.92) + 0.5 (-9.8) (14.92^2)
d = 1090.53 m
Then, we determine the maximum altitude:
d1 + d2 = 124.27 m + 1090.53 m = 1214.8 m</span>
8.8 miles. You divide 22.4 & 2.55.