Answer:
a) 25.5 µH
b) 22.95 mV
Explanation:
Induced emf in a inductor is given by
E = L * di/dt, where
E is the voltage of the circuit
L is the inductance of the circuit
di/dt if the rate of inductance
A
So we have
0.0037 = L * 145
L = 0.0037 / 145
L = 0.0000255
L = 25.5 µH
B
i(t) = 225t²
Recall that
E = L * di/dt, so that
E = 25.5 µH * |225t²|
Differentiating with respect to t, we have
E = 25.5 * 2 * 225t
E = 25.5 * 450t
Solving for t = 2,we get
E = 25.5 * 450(2)
E = 25.5 * 900
E = 22950 µV or
E = 22.95 mV
Answer:
Explanation:
Using second degree taylor polynomials
let
be position function and set 
where S(0) is the initial position
Then
and 
we have
, 
so 
b.) yes
Answer:
Acceleration = 2.35 m/
Speed = 8.67 m/s
Explanation:
The coefficient of friction , u =0.3
The angle of incline = 30°
The two forces acting on block are weight and friction.
weight along the incline = mg cos60° =
= 0.5 mg
Friction along incline = umg cos30° = mg 
Friction along incline = 0.26 mg
Net force acting on the weight = (0.5 - 0.26) mg = 0.24 mg
Acceleration =
= 0.24 g = 2.35 m/
The height of incline = 8 m
Length of the inclined edge = 16 m


v= 8.67 m/s
F=9/5C+32 is the formula for Celsius to Fahrenheit.
The hypothesis because its very hard to make and it confounds me