V = u + at where u is initial velocity (15 m/s), a is acceleration (2m/s^2) and t is time (15 seconds)
V = 15 + 2 X 15
V = 45 m/s
4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:

Answer:
Work done = 35467.278 J
Explanation:
Given:
Height of the cone = 4m
radius (r) of the cone = 1.2m
Density of the cone = 600kg/m³
Acceleration due to gravity, g = 9.8 m/s²
Now,
The total mass of the cone (m) = Density of the cone × volume of the cone
Volume of the cone = 
thus,
volume of the cone =
= 6.03 m³
therefore, the mass of the cone = 600 Kg/m³ × 6.03 m³ = 3619.11 kg
The center of mass for the cone lies at the
times the total height
thus,
center of mass lies at, h' = 
Now, the work gone (W) against gravity is given as:
W = mgh'
W = 3619.11kg × 9.8 m/s² × 1 = 35467.278 J
Answer:
a

b

Explanation:
From the question we are told that
The current is 
The length of one side of the square 
The separation between the plate is 
Generally electric flux is mathematically represented as

differentiating both sides with respect to t is

=> 
Here
is the permitivity of free space with value

=> 
=> 
Generally the displacement current between the plates in A

=> 
Answer:
Explanation:
Where is the remaining part of the question? This is a very easy one