1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
3 years ago
12

0.0884 moles of a diatomic gas

Physics
2 answers:
Sloan [31]3 years ago
7 0

Answer:

W = - 118.24 J (negative sign shows that work is done on piston)

Explanation:

First, we find the change in internal energy of the diatomic gas by using the following formula:

\Delta\ U = nC_{v}\Delta\ T

where,

ΔU = Change in internal energy of gas = ?

n = no. of moles of gas = 0.0884 mole

Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)

Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K

ΔT = Rise in Temperature = 18.8 K

Therefore,

\Delta\ U = (0.0884\ moles)(20.785\ J/mol.K)(18.8\ K)\\\Delta\ U = 34.54\ J

Now, we can apply First Law of Thermodynamics as follows:

\Delta\ Q = \Delta\ U + W

where,

ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)

W = Work done = ?

Therefore,

-83.7\ J = 34.54\ J + W\\W = -83.7\ J - 34.54\ J\\

<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>

Mandarinka [93]3 years ago
7 0

Answer:

-49.2

Explanation:

Trust me bro

You might be interested in
3.1 Two waves A and B have frequencies 256 Hz and 1024 Hz respectively have amplitude in ratio 3:1 1.What is their ratio of freq
scoundrel [369]

Answer:

1. the one with the raito

2. the one that stubbed their toe

Explanation:

8 0
3 years ago
According to Newton’s law of universal gravitation, which statements are true?
andreyandreev [35.5K]

Before we solve this, we should know this fact:

According to Newton's Law of Gravitation, the force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. The force acts along the line joining the centres of the two objects. It can be shown by this:

F ∝ \frac{Mm}{ {d}^{2} }

Now, let us check all the options.

A. As we move to higher altitudes, the force of gravity on us decreases.

<em>This </em><em>statement </em><em>is </em><em>true.</em>

The force of gravity is inversely proportional to the square of distance from the centre of the earth. If, we go up the surface of the earth, the distance from the centre of the earth increases and hence the value of force of gravity decrease. So, force of gravity decreases with altitude.

B. As we move to higher altitudes, the force of gravity on us increases.

<em>This </em><em>statement</em><em> </em><em>is </em><em>false.</em>

We have already got the result in option A. that the force of gravity decreases with altitude. It never increases with altitude.

C. As we gain mass, the force of gravity on us decreases.

<em>This </em><em>statement</em><em> </em><em>is </em><em>false.</em>

The force of gravity is directly proportional to the product of the masses. So, if increase our mass, then the force of gravity will also increase and if we decrease our mass, then the force of gravity decreases.

D. As we gain mass, the force of gravity on us increases.

<em>This </em><em>statement</em><em> is</em><em> </em><em>true.</em>

As mentioned earlier in option C., the force of gravity is directly proportional to the product of the masses of the earth and another object. So, as we gain mass, the force of gravity on us increases.

E. As we move faster, the force of gravity on us increases.

<em>This </em><em>statement</em><em> is</em><em> </em><em>true</em><em>.</em>

Here, we have to consider a different formula. According to Newton's Second Law,

F = ma, where F is the force, m is the mass and a is the acceleration.

In other words,

F ∝ a, i.e., force is directly proportional to acceleration.

We know, acceleration is the rate of change of velocity of an body within a time period.

So, if speed is increased, then acceleration will also be greater, which results in the increase of force. So, as we move faster, the force of gravity on us increases.

<u>Answers:</u>

A: As we move to higher altitudes, the force of gravity on us decreases.

D: As we gain mass, the force of gravity on us increases.

E: As we move faster, the force of gravity on us increases.

Hope you could understand.

If you have any query, feel free to ask.

7 0
2 years ago
A satellite orbits earth with a mean altitude of 361 km. If the orbit is circular, what are the satellite's time period and spee
Advocard [28]

Answer:

v = 7.69 x 10³ m/s = 7690 m/s

T = 5500 s = 91.67 min = 1.53 h

Explanation:

In order for the satellite to orbit the earth, the force of gravitation on satellite must be equal to the centripetal force acting on it:

F_{gravitation}= F_{centripetal}\\\\\frac{GM_{s} M_{E}}{r^2}  = \frac{M_{s} v^2}{r}\\\\\frac{GM_{E}}{r} = v^2\\\\v = \sqrt{\frac{GM_{E}}{r} } \\\\

where,

G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²

Me = Mass of Earth = 5.97 x 10²⁴ kg

r = distance between the center of Earth and Satellite = Radius of Earth + Altitude = 6.371 x 10⁶ m + 0.361 x 10⁶ m = 6.732 x 10⁶ m

v = orbital speed = ?

Therefore,

v = \sqrt{\frac{(6.67 x 10^{-11}N.m^2/kg^2)(5.97 x 10^{24} kg)}{6.732 x 10^6 m} }\\\\

<u>v = 7.69 x 10³ m/s</u>

For time period satellite completes one revolution around the earth. It means that the distance covered by satellite is equal to circumference of circle at the given altitude.

So, its orbital speed can be given as:

v = \frac{Circumference of Circle at Given Altitude}{T}\\\\v =  \frac{2\pi r}{T}\\\\

where,

T = Time Period of Satellite = ?

Therefore,

T = \frac{2\pi r}{v}\\\\T = \frac{(2\pi )(6.732 x 10^6 m}{7.69 x 10^3 m/s}\\\\

<u>T = 5500 s = 91.67 min = 1.53 h</u>

7 0
3 years ago
What has more kinetic energy 15 kg ball rolling north at 15 m/s or a 15 kg ball rolling backwards at 7m/s
Setler79 [48]

Answer:

15 kg ball

Explanation:

6 0
3 years ago
Gauss’ law: a. Relates the surface charge density to the electric field.b. Relates the electric field at points on a closed surf
Mamont248 [21]

Answer:

b. Relates the electric field at points on a closed surface to the net charge enclosed by that surface

Explanation:

Gauss's law states that the flux of certain fields through a closed surface is proportional to the magnitude of the sources of that field within the same surface. The electric flux expresses the measure of the electric field that crosses a certain surface. Therefore, the electric field on a closed surface is proportional to the net charge enclosed by that surface.

8 0
3 years ago
Other questions:
  • Which statement BEST describes the benefits of muscular fitness training?
    5·1 answer
  • All chordates are vertebrates?<br> A. True <br> B. False
    6·2 answers
  • Technician a says that the water pump is a centripetal pump. technician b says that centripetal force is the outward force that
    13·1 answer
  • Based on what you've read, answer the following questions.
    12·1 answer
  • When drawing up liquid into a micropipette, put the tip in the liquid at a Choose... degree angle, push the plunger to the Choos
    5·1 answer
  • The number of wave cycles in a given unit of time is called the wave
    8·1 answer
  • What state has the longest coast
    9·1 answer
  • Is a body which is moving in a negative direction but has a positive acceleration speeding up or slowing down?​
    11·1 answer
  • A student investigated how length affects resistance of a wire.
    7·1 answer
  • Hernando builds a simple DC series circuit with a standard D-cell battery and uses an ammeter to determine that the total curren
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!