Answer:
ΔS° = 180.5 J/mol.K
Explanation:
Let's consider the following reaction.
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g)
The standard molar entropy of the reaction (ΔS°) can be calculated using the following expression.
ΔS° = ∑np × S°p - ∑nr × S°r
where,
ni are the moles of reactants and products
S°i are the standard molar entropies of reactants and products
ΔS° = 4 mol × S°(NO(g)) + 6 × S°(H₂O(g)) - 4 mol × S°(NH₃(g)) - 5 mol × S°(O₂(g))
ΔS° = 4 mol × 210.8 J/K.mol + 6 × 188.8 j/K.mol - 4 mol × 192.5 J/K.mol - 5 mol × 205.1 J/K.mol
ΔS° = 180.5 J/K
This is the change in the entropy per mole of reaction.
Let us calculate the structure of the electric shells of the Al atom. It has an atomic number of 13, so it has 13 electrons. The first 2 go to the first hell. The next 8 need to go to the second shell and the last 3 ones would go to the outermost shell. The outer shell, that is the most important one for chemical reactions, has thus 3 electrons. An atom always tries to have a completed outer shell (with either 2 or 8 atoms). It is easier for a cell to have a charge of +3 than a charge of -5 (smaller absolute value) and thus the Aluminum atom will try to get rid of the 3 electrons. In this process, it loses negative charge thus it will become positively charged. Hence, the correct answer is that it will prefer to lose 3 electrons and become positively charged.
CO2 is the emperical formula of carbon dioxide
The length in kilometers of a row of 4.34 x 1023 hydrogen atoms is 4.34 x 10¹⁴ km.
<h3>
Length of the entire hydrogen atoms</h3>
The length of the entire hydrogen atom is calculated as follows;
Length of the row = number x diameter of one
Length of the row = 4.34 x 10²³ x 10⁶ x 10⁻¹²
Length of the row = 4.34 x 10¹⁷ m
Length of the row = 4.34 x 10¹⁴ km
Thus, the length in kilometers of a row of 4.34 x 1023 hydrogen atoms is 4.34 x 10¹⁴ km.
Learn more about diameter of hydrogen atom here: brainly.com/question/13796082
#SPJ1