Hello!
Use the formula:
M = k * p
Data:
M = Mechanic energy
k = Kinetic energy
p = Potencial energy
Descomposing:
M = (0,5*mv²) + (mgh)
Replacing:
M = (0,5 * 59,6 kg * (23,4 m/s)²) + (59,6 kg * 9,81 m/s² * 44,6 m)
M = 16317,28 J + 26076,54 J
M = 42393,82 J
The mechanic energy is <u>42393,82 Joules.</u>
Cause surface currents to move in circular paths.
Answer:
11.78meters
Explanation:
Given data
Mass m = 100kg
Length of cord= 10m
Spring constant k= 35N/m
At the greatest vertical distance, the spring potential energy is equal to the gravitational potential energy
That is
Us=Ug
Us= 1/2kx^2
Ug= mgh
1/2kx^2= mgh
0.5*35*10^2= 100*9.81*h
0.5*35*100=981h
1750=981h
h= 1750/981
h= 1.78
Hence the bungee jumper will reach 1.78+10= 11.78meters below the surface of the bridge
Answer:
The acceleration of the car will be 
Explanation:
We have given that distance from stop sign s = 200 m
Time t = 0.2 sec
We have to find the constant acceleration
Now from second equation of motion 


So the acceleration of the car will be 
Answer:
520 miles per hour
Explanation:
Let the speed of the Boeing 747 be x miles per hour.
The small airplane covers distance of 780 miles with speed 260 miles per hour.
Also,
After 1.5 hours the Boeing 747 leave the same place and reaches at same time. Both covered distance of 780 miles.
So,
<u>Time taken by Boeing 747 + 1.5 hours = Time taken by small plane.</u>
Also,
Time = Distance/ speed
So,
780 / x + 1.5 = 780/ 260
Solving for x, we get:
<u>x = 520 miles per hour</u>