Solving this chemistry is a little bit hard because the question didn't give some important detailed.
So first, there are a couple problems with your question.
We will just need to know which direction will it proceed to reach equilibrium.
Your expression for Kc (and Qc ) for the reaction should be:
Kc = [C] / [A] [B]^2
You have not provided a value for Kc, so a value of Qc tells you absolutely nothing. Qc is only valuable in relation to a numerical value for Kc. If Qc = Kc, then the reaction is at equilibrium. If Q < K, the reaction will form more products to reach equilibrium, and if Q > Kc, the reaction will form more reactants.
Answer:
Salt domes result when <u><em>the pressure of overlying rock forces the salt to rise. (Option 2)</em></u>
Explanation:
In geology it is called the gently wavy and rounded relief dome.
Salt has some special properties like rock:
- Salt has a lower specific gravity in relation to a common mineral.
- Salts deform plastically and are very mobile.
- Salts have a high water solubility.
These properties allow, if the pressure is very high, that the salt layers move upwards (due to their lower density). That is, the internal forces produce the elevation of the strata by means of the pressure they exert towards a higher point, generating that the salt looks for its way towards the surface [that is, the salt ascends through the sedimentary layers of the earth's crust, crossing them and deforming them] and causing the bulging structure. The oldest strata are located in the central area of the dome, while the most modern are distributed in the farthest radius. The structure is called salt or diapiro dome, the phenomenon by which it is formed is called diapirism.
Finally, you can say that <u><em>Salt domes result when the pressure of overlying rock forces the salt to rise.</em></u>
Answer: Handwashing. It is estimated that washing hands with soap and water could reduce diarrheal disease-associated deaths by up to 50% 1. Researchers in London estimate that if everyone routinely washed their hands, a million deaths a year could be prevented 2.
Explanation:
Answer:
Explanation:
412 ATP's will be generated from the complete metabolic oxidation of tripalmitin (tripalmitoylglycerol)
130 ATP from the oxidation of palmitate
22 ATP from the oxidation of glycerol
Altogether 130 + 22 = 412 ATP will be produced.
Here in case of tripalmitin (tripalmitoylglycerol), we have 51 carbons.
When 51 carbons can produce 412 ATPs
Then 1 carbon will produce how many ATPs = 412 ATPs/ 51 carbon= 8.1 ATPs.
This shows that ATP yield per carbon often oxidized will be 8.1 ATPs
Now we will see the ATP yield in the case of glucose.
Glucose is made up of 6 carbon and complete oxidation of glucose will produce 38 ATPs
When 6 carbons can yield 38 ATPs
Then 1 carbon can yield how many ATPs= 38 ATPs/ 6 carbons= 6.33 ATPs.
So, ATP yield per carbon in case of glucose will be 6.33 ATPs