Explanation:
10
/9 Ω
potential difference across the cell in open circuit is the emf of the cell.
Hence, emf E=2.2V
when, circuit is closed, potential difference across cell is given by V=E−Ir
And,
I= E/
R+r
Hence, V= E− Er/
R+r
⟹ V= ER/
R+r
⟹ 1.8= 2.2×5
/5+r
⟹9+1.8r=11
⟹ r= 2/ 1.8 Ω
⟹ r= 10/9 Ω
Speed = Distance/Time = 100 km / 4 hours = 100/4 km per hour = 25 kph
I am pretty sure that electromagnetic Induction states that moving a magnet through a loop of wire creates B. magnetic field. I consider this option to be correct because according to lenz's law <span>conductor moves through loop and to be more exact in this case through a magnetic field. I hope it help!</span>
Explanation:
it is equal to the speed (v) of a wave train in a medium divided by its frequency (f): λ = v/f. Waves of different wavelengths.