Answer:
Time interval;Δt ≈ 37 seconds
Explanation:
We are given;
Angular deceleration;α = -1.6 rad/s²
Initial angular velocity;ω_i = 59 rad/s
Final angular velocity;ω_f = 0 rad/s
Now, the formula to calculate the acceleration would be gotten from;
α = Change in angular velocity/time interval
Thus; α = Δω/Δt = (ω_f - ω_i)/Δt
So, α = (ω_f - ω_i)/Δt
Making Δt the subject, we have;
Δt = (ω_f - ω_i)/α
Plugging in the relevant values to obtain;
Δt = (0 - 59)/(-1.6)
Δt = -59/-1.6
Δt = 36.875 seconds ≈ 37 seconds
Answer:
The electrical potential energy is 0.027 Joules.
Explanation:
The values from the question are
charge (q) = 
Electric Field strength (E) = 
Distance from source (d) = 0.030 m
Now the formula for the electrical potential energy (U) is given by

So now insert the values to find the answer

On further solving

Answer:
1.8 × 10⁻⁸ Hm
Explanation:
Given that:
The refractive index of the film = 19
The wavelength of the light = 136.8 μ m
The thickness can be calculated by using the formula shown below as:
Where, n is the refractive index of the film
is the wavelength
So, thickness is:
Thickness = 1.8 μ m
Since,
1 μ m = 10⁻⁸ Hm
So,
Thickness = 1.8 × 10⁻⁸ Hm
Answer:c-The gravitational effect when spacecraft flies close to the asteriod
Explanation:
Gravitational effect on the spacecraft gives an estimate that how big is the asteroid by experiencing its gravitational pull.
The amount of extra thrust required to maintain the trajectory of the spacecraft during its motion hints at the scientist about the size of the asteroid.
Gravitational pull is directly proportional to the mass of object so greater the mass, greater will be the pull.
Answer:
232.641374 mph
Explanation:
A race car has a maximum speed of 0.104km/s
Let X represent the speed in miles per hour
Therefore the speed in miles per hour can be calculated as follows
1 km/s = 2,236.936292 mph
0.104km/s = X
X = 0.104 × 2,236.936292
X = 232.641374
Hence the speed in miles per hour is 232.641374 mph