Answer:
101.50 g H₂O
Explanation:
The mole ratio of HNO₃ and H₂O is 6 : 2
Hence, 16.9 moles of HNO₃ will produce = 2/6×16.9 = 5.63 moles of H₂O
Also,
Mass = Moles × M.Mass
Mass = 5.63 mol × 18.02 g/mol
Mass = 101.50 g H₂O
<span>The correct answer is b. Boiling point, why? because the liquid sample of napthalene is heated and remained at the temperature of 218 degrees celsius, the outcome was that the napthalene was completely vaporized, therefore we are given the scenario that at the temperature of 218 degrees celsius is considered to be the boiling pont of napthalene.</span>
Answer : The value of work done by an ideal gas is, 37.9 J
Explanation :
Formula used :
Expansion work = External pressure of gas × Volume of gas
Expansion work = 1.50 atm × 0.25 L
Expansion work = 0.375 L.atm
Conversion used : (1 L.atm = 101.3 J)
Expansion work = 0.375 × 101.3 = 37.9 J
Therefore, the value of work done by an ideal gas is, 37.9 J
I am unsure if this is correct, but this might be the whole section:
- The top of the syringe is a circle. You need to compute its area for use in later computations of pressure values. Start by using a ruler to measure the diameter. Estimate to the nearest 0.01 cm. <em>Answer: </em><em>3.60 </em><em>cm</em>
- Divide by two to find the radius. Maintain significant figures. <em>Answer: </em><em>1.80 </em><em>cm</em>
- Substitute the radius into the formula A = πr² to find the area of the top of the syringe. Maintain significant figures. <em>Answer: </em><em>10.2 </em><em>cm²</em>