The average force applied to the ball= 106.7 N
Explanation:
Force is given by
f= ΔP/t
ΔP= change in momentum= m Vf- m Vi
m= mass =0.2 kg
Vf= final velocity= 12 m/s
Vi=initial velocity= -20 m/s ( negative because it is going towards the wall which is treated as negative axis)
t= time= 60 ms= 0.06 s
now ΔP= 0.2 [ 12-(-20)]
ΔP=0.2 (32)=6.4 kg m/s
now force F= ΔP/t
F= 6.4/0.06
F=106.7 N
Answer:
Increase in the temperature of water would be 0.9 degree C
Explanation:
As we know by energy conservation
Change in the gravitational potential energy of the cylinder = increase in the thermal energy of the water
Here we know that the gravitational potential energy of the cylinder is given as

here we have
h = 300 m
now we can say

now if the cylinder falls from height h = 100 m
then we have

now from above two equations


A measurement that will always give the same answer.
Explanation:
When an object moves in a circular path, it will have circular acceleration. Its magnitude of acceleration is given by :

Since, 

T is the time period
R is the radius of the circular path
To increase the centripetal acceleration bu a factor of 1.5 or 3/2, radius of circle must be increase by a factor of 6 and T is increased by a factor of 2 such that,
R'=6R and T'=2T
So,




Hence, this is the required solution.
According to the information provided to define an average density, it is necessary to use the concepts related to mass calculation based on gravitational constants and radius, as well as the calculation of the volume of a sphere.
By definition we know that the mass of a body in this case of the earth is given as a function of

Where,
g= gravitational acceleration
G = Universal gravitational constant
r = radius (earth at this case)
All of this values we have,

Replacing at this equation we have that

The Volume of a Sphere is equal to

Therefore using the relation between mass, volume and density we have that
