Answer: its mechanical energy
Explanation:
The wavelength of the wave is 0.055 m
Explanation:
The relationship between speed, frequency and wavelength of a wave is given by the wave equation:

where
v is the speed
f is the frequency
is the wavelength
For the sound wave in this problem we have
v = 340 m/s is the speed
f = 6,191 Hz is the frequency
Solving for
, we find the wavelength:

Learn more about waves and wavelength:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
(a) The magnitude of the acceleration of the electron is 5.62 x 10¹³ m/s².
(b) The speed of the electron after the given time is 4.78 x 10⁵ m/s.
<h3>
Acceleration of the electron</h3>
The acceleration of the electron is calculated as follows;
F = qE
ma = qE
a = qE/m
a = (1.6 x 10⁻¹⁹ x 320)/(9.11 x 10⁻³¹)
a = 5.62 x 10¹³ m/s²
<h3>Speed of the electron</h3>
v = at
v = 5.62 x 10¹³ m/s² x 8.50 x 10⁻⁹ s
v = 4.78 x 10⁵ m/s
Learn more about speed here: brainly.com/question/4931057
#SPJ1
F=ma
m=F/a=95/0.8= 118.75kg
your friend is pretty heavy XD
Answer: Option (b) is the correct answer.
Explanation:
Since, there is a negative charge present on the ball and a positive charge present on the rod. So, when the negatively charged metal ball will come in contact with the rod then positive charges from rod get conducted towards the metal ball.
Hence, the rod gets neutralized. But towards the metal ball there is a continuous supply of negative charges. Therefore, after the neutralization of positive charge from the rod there will be flow of negative charges from the metal ball towards the rod.
Thus, we can conclude that negative charge spread evenly on both ends.