Answer:
a = 2 m/s^2
which agrees with the third answer option provided.
Explanation:
Recall the kinematic formula for displacement under the action of a constant acceleration "a":
yf - yi = 1/2 a t^2
using the information provided this equation becomes:
9 = 1/2 a (3)^2
solve for a:
9 * 2 / 9 = a
then a = 2 m/s^2
which agrees with the third answer option provided.
Answer:
dt/dx = -0.373702
dt/dy = -1.121107
Explanation:
Given data
T(x, y) = 54/(7 + x² + y²)
to find out
rate of change of temperature with respect to distance
solution
we know function
T(x, y) = 54 /( 7 + x² + y²)
so derivative it x and y direction i.e
dt/dx = -54× 2x / (7 +x² + y²)² .........................1
dt/dy = -54× 2y / (7 + x² + y²)² .........................2
now put the value point (1,3) as x = 1 and y = 3 in equation 1 and 2
dt/dx = -54× 2(1) / (7 +(1)² + (3)²)²
dt/dx = -0.373702
and
dt/dy = -54× 2(3) / (7 + (1)² + (3)²)²
dt/dy = -1.121107
Answer:
Entonces seria 127 para vencer.
Explanation:
espero averte ayudado:-)
Answer:
Radiation heat energy transfer
Explanation:
The type of heat transfer from the Sun is radiation heat transfer, which is the transfer of heat through electromagnetic radiation
The distance of the Sun to the Earth is several million kilometers away, with the space between being composes of vacuum and the nuclear reaction in the Sun's core generates vast amount of electromagnetic radiation that is transferred all across the universe and reaches the Earth as visible light and radiant energy at the speed of light
The radiant energy transferred from the Sun heats up the Earth, including the car's interior.
Answer:
B) Degrees
Explanation:
The directions of the vectors are often defined in terms of due East, due North, due West and due South. A direction exactly in between of North and East can be described as Northeast, similarly we can describe directions in terms of Northwest, Southeast and South west.
From these, the direction of a vector can be easily expressed in degrees, which is measured counter clockwise about its tail from due East. Considering that we can say that East is at 0° , North is at 90° , West is at 180 and South is at 270° counter clockwise rotation from due East.
So, we know that the direction of a vector lying somewhere between due East i.e 0° and due North i.e 90°, will be measured in degrees, which will have a value between 0°-90°