Answer:
Thus, if field were sampled at same distance, the field due to short wire is greater than field due to long wire.
Explanation:
The magnetic field, B of long straight wire can be obtained by applying ampere's law

I is here current, and r's the distance from the wire to the field of measurement.
The magnetic field is obviously directly proportional to the current wire. From this expression.
As the resistance of the long cable is proportional to the cable length, the short cable becomes less resilient than the long cable, so going through the short cable (where filled with the same material) is a bigger amount of currents. If the field is measured at the same time, the field is therefore larger than the long wire because of the short wire.
Use stronger magnets
increase current
push magnets closer to coil
adding more sets of coils
<h2>It solved by the Hooke's law states F=kx</h2>
answer is
<h2>0.4n/m</h2>
Answer:
Because in order for work to be done on an object, the object must be moving. Why isn't work being done on a barbell when a weight lifter is holding the barbell over his head? Work is maximized when force is applied in the same direction that the object is moving. ... In order to do work faster, more_is required.
Electrical current is measured using the ampere.