1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
12

How to make text take shape of object in affinity designer

Engineering
1 answer:
Alina [70]3 years ago
6 0

Answer:

To fit text to a shape in Affinity Designer, make sure you have your text selected. Then, grab the Frame Text Tool and click on the shape. A blinking cursor will appear within the shape, indicating that you can begin typing. The text you type will be confined to the boundaries of the shape.

Explanation:

You might be interested in
Which two is right about febuary 14
igor_vitrenko [27]

Answer:A and B

Explanation:

3 0
3 years ago
Read 2 more answers
How to make text take shape of object in affinity designer
Alina [70]

Answer:

To fit text to a shape in Affinity Designer, make sure you have your text selected. Then, grab the Frame Text Tool and click on the shape. A blinking cursor will appear within the shape, indicating that you can begin typing. The text you type will be confined to the boundaries of the shape.

Explanation:

6 0
3 years ago
Write an<br> algorithm and draw a flowchart to convert the length in feet to<br> centimeter
Simora [160]

Answer:

blah blah blah sh ut up read learn

3 0
3 years ago
To find the reactance XLXLX_L of an inductor, imagine that a current I(t)=I0sin(ωt)I(t)=I0sin⁡(ωt) , is flowing through the indu
Sophie [7]

Answer:

V(t) = XLI₀sin(π/2 - ωt)

Explanation:

According to Maxwell's equation which is expressed as;

V(t) = dФ/dt ........(1)

Magnetic flux Ф can also be expressed as;

Ф = LI(t)

Where

L = inductance of the inductor

I = current in Ampere

We can therefore Express Maxwell equation as:

V(t) = dLI(t)/dt ....... (2)

Since the inductance is constant then voltage remains

V(t) = LdI(t)/dt

In an AC circuit, the current is time varying and it is given in the form of

I(t) = I₀sin(ωt)

Substitutes the current I(t) into equation (2)

Then the voltage across inductor will be expressed as

V(t) = Ld(I₀sin(ωt))/dt

V(t) = LI₀ωcos(ωt)

Where cos(ωt) = sin(π/2 - ωt)

Then

V(t) = ωLI₀sin(π/2 - ωt) .....(3)

Because the voltage and current are out of phase with the phase difference of π/2 or 90°

The inductive reactance XL = ωL

Substitute ωL for XL in equation (3)

Therefore, the voltage across inductor is can be expressed as;

V(t) = XLI₀sin(π/2 - ωt)

3 0
4 years ago
For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea
miskamm [114]

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

7 0
3 years ago
Other questions:
  • the velocity of a particle is given by v=16t^2i+4t^3j+(5t+2k) m/s, where t is in seconds. if the particle is at the origin when
    10·1 answer
  • What is the difference between a job and a profession
    9·1 answer
  • Talc and graphite are two of the lowest minerals on the hardness scale. They are also described by terms like greasy or soapy. B
    14·1 answer
  • Block B starts from rest, block A moves with a constant acceleration, and slider block C moves to the right with a constant acce
    11·1 answer
  • So far in your lifetime, about how much garbage have you contributed
    12·1 answer
  • Assume a steel pipe of inner radius r1= 20 mm and outer radius r2= 25 mm, which is exposed to natural convection at h = 50 W/m2.
    12·1 answer
  • Which source would be the best to base a hypothesis upon
    9·1 answer
  • Consider the titration of 100.0 mL of 0.200 M CH3NH2 by 0.100 M HCl.
    13·1 answer
  • What are common names assigned to instruction addresses in a PLC program called
    8·1 answer
  • Motors are used to convert electrical energy into mechanical work and the output mechanical work of a motor is rated in horsepow
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!