Answer:

Explanation:
Given that:
The height of a triangular stabilizing fin on its stern is 1 ft tall
and it length is 2 ft long.
Temperature = 60 °F
The objective is to determine the drag on the fin when the submarine is traveling at a speed of 2.5 ft/s.
From these information given; we can have a diagrammatic representation describing how the triangular stabilizing fin looks like as we resolve them into horizontal and vertical component.
The diagram can be found in the attached file below.
If we recall ,we know that;
Kinematic viscosity v = 
the density of water ρ = 62.36 lb /ft³



which is less than < 5.0 × 10⁵
Now; For laminar flow; the drag on the fin when the submarine is traveling at 2.5 ft/s can be determined by using the expression:

where;
= strip area

Therefore;


Let note that y = 0.5x from what we have in the diagram,
so , x = y/0.5
By applying the rule of integration on both sides, we have:


Let U = (2-2y)
-2dy = du
dy = -du/2


![F_D = -0.568 [ \dfrac{\frac{1}{2}U^{ \frac{1}{2}+1 } }{\frac{1}{2}+1}]^0__2](https://tex.z-dn.net/?f=F_D%20%3D%20-0.568%20%5B%20%5Cdfrac%7B%5Cfrac%7B1%7D%7B2%7DU%5E%7B%20%5Cfrac%7B1%7D%7B2%7D%2B1%20%7D%20%20%7D%7B%5Cfrac%7B1%7D%7B2%7D%2B1%7D%5D%5E0__2)
![F_D = -0.568 [ \dfrac{2}{3}U^{\frac{3}{2} } ] ^0__2](https://tex.z-dn.net/?f=F_D%20%3D%20-0.568%20%5B%20%5Cdfrac%7B2%7D%7B3%7DU%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%20%5D%20%5E0__2)
![F_D = -0.568 [0 - \dfrac{2}{3}(2)^{\frac{3}{2} } ]](https://tex.z-dn.net/?f=F_D%20%3D%20-0.568%20%5B0%20-%20%20%5Cdfrac%7B2%7D%7B3%7D%282%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%20%5D)
![F_D = -0.568 [- \dfrac{2}{3} (2.828427125)} ]](https://tex.z-dn.net/?f=F_D%20%3D%20-0.568%20%5B-%20%5Cdfrac%7B2%7D%7B3%7D%20%282.828427125%29%7D%20%20%20%5D)


The heat transfer which is in steady state, the heat transfer rate to the wall is equal to the wall.
<u>Explanation:</u>
- The convection transfer of heat to the wall is

- Here,
is the temperature of solid surface,
is the temperature of moving fluid stream which is adjacent of solid surface, h is the heat transfer coefficient. - The coefficient of convection heat transfers outer surface contains 3 times to the inner surface which experience smaller drop of temperature for 3 times that compares to inner surface.
- Hence, the temperatures outer surface get close to the surroundings of air temperature.
Different communities will have a demand for different careers. Areas with a large number of school will have a higher demand for teachers. The community needs professors, pays them well, you might decide to choose that path
Answer:
0.05%
Explanation:
From the question, we have;
The yield strength of the mild steel,
= 43.5 ksi
Young's modulus of elasticity, ∈ = 29,000 ksi
The total strain,
= 0.2% = 0.002
The inelatic strain
is given as follows;
=
-
/∈
Therefore, we have;
= 0.002 - 43.5/(29,000) = 0.0005
Therefore, the inelastic strain,
= 0.0005 = 0.05%
Taking the inelastic strain as the residual strain, we have;
The residual strain = 0.05%
Answer:
30
Explanation:
Legally that's when you have to respond