<span>1.40 x 10^5 kilograms of calcium oxide
The reaction looks like
SO2 + CaO => CaSO3
First, determine the mass of sulfur in the coal
5.00 x 10^6 * 1.60 x 10^-2 = 8.00 x 10^4
Now lookup the atomic weights of Sulfur, Calcium, and Oxygen.
Sulfur = 32.065
Calcium = 40.078
Oxygen = 15.999
Calculate the molar mass of CaO
CaO = 40.078 + 15.999 = 56.077
Since 1 atom of sulfur makes 1 atom of sulfur dioxide, we don't need the molar mass of sulfur dioxide. We merely need the number of moles of sulfur we're burning. divide the mass of sulfur by the atomic weight.
8.00 x 10^4 / 32.065 = 2.49 x 10^3 moles
Since 1 molecule of sulfur dioxide is reacted with 1 molecule of calcium oxide, just multiply the number of moles needed by the molar mass
2.49 x 10^3 * 56.077 = 1.40 x 10^5
So you need to use 1.40 x 10^5 kilograms of calcium oxide per day to treat the sulfur dioxide generated by burning 5.00 x 10^6 kilograms of coal with 1.60% sulfur.</span>
Answer:
15.0 L
Explanation:
To find the volume, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
To calculate the volume, you need to (1) convert grams C₄H₁₀ to moles (via the molar mass), then (2) convert the temperature from Celsius to Kelvin, and then (3) calculate the volume (via the Ideal Gas Law).
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
32 grams C₄H₁₀ 1 moles
------------------------- x ----------------------- = 0.551 moles C₄H₁₀
58.124 grams
P = 728 mmHg R = 62.36 L*mmHg/mol*K
V = ? L T = 45.0 °C + 273.15 = 318.15 K
n = 0.551 moles
PV = nRT
(728 mmHg)V = (0.551 moles)(62.36 L*mmHg/mol*K)(318.15 K)
(728 mmHg)V = 10922.7632
V = 15.0 L
Answer:
The spin of the complex is 5.92 B.M
Explanation:
Please see the attachments below
Answer:
63.6 dm³
Explanation:
Volume of gas= no. of moles ×24dm³
Thus, volume of N₂O
= 2.65 × 24
= 63.6 dm³
Answer:
Far right
Explanation:
The qualities indicated here are of the element Sulphur (S) and any element of same qualities i.e color pale yellow, nature solid, electrical conductivity none, should be placed at far right corner of the periodic table or position 3 mentioned in the attached picture.
Hope it help!