Answer:
Its either A. Or C cause ive had a question like this before So Im sure But if not Then Im so sorry
Newton's 2nd law:
Fnet = ma
Fnet is the net force acting on an object, m is the object's mass, and a is the acceleration.
The electric force on a charged object is given by
Fe = Eq
Fe is the electric force, E is the electric field at the point where the object is, and q is the object's charge.
We can assume, if the only force acting on the proton and electron is the electric force due to the electric field, that for both particles, Fnet = Fe
Fe = Eq
Eq = ma
a = Eq/m
We will also assume that the electric field acting on the proton and electron are the same. The proton and electron also have the same magnitude of charge (1.6×10⁻¹⁹C). What makes the difference in their acceleration is their masses. A quick Google search will provide the following values:
mass of proton = 1.67×10⁻²⁷kg
mass of electron = 9.11×10⁻³¹kg
The acceleration of an object is inversely proportional to its mass, so the electron will experience a greater acceleration than the proton.
Answer:
B. 
Explanation:
Assuming we are dealing with a perfect gas, we should use the perfect gas equation:

With T the temperature, V the volume, P the pressure, R the perfect gas constant and n the number of mol, we are going to use the subscripts i for the initial state when the gas has 20 cubic inches of volume and absolute pressure of 5 psi, and final state when the gas reaches 10 psi, so we have two equations:
(1)
(2)
Assuming the temperature and the number of moles remain constant (number of moles remain constant if we don't have a leak of gas) we should equate equations (1) and (2) because
,
and R is an universal constant:
, solving for 


'Displacement' is the distance and direction between the starting point and
ending point, regardless of the path followed to get there.
A particle that's executing simple harmonic motion is always in the same place
where it was one time period ago, and where it will be later after another time
period has passed.
So its displacement during exactly one time period is exactly zero.