1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
2 years ago
7

Someone. Plz plz help meeee

Physics
1 answer:
anygoal [31]2 years ago
6 0

Answer:

The himalayan mountain are at a divergent boundary

You might be interested in
An object is located 70 cm from a concave mirror with a focal length of 15 cm. What is the image
Stels [109]

(a) The distance of the image formed by the concave mirror is 19.1 cm.

(b) The image formed is diminished and real.

<h3>Image distance </h3>

The distance of the image formed by the concave mirror is calculated as follows;

1/f = 1/v + 1/u

1/v = 1/f - 1/u

1/v = 1/15 - 1/70

1/v = 0.05238

v = 1/0.05238

v = 19.1 cm

The image distance is smaller than object distance, thus the image formed is diminished and real.

Learn more about concave mirror here: brainly.com/question/13164847

#SPJ1

5 0
2 years ago
What is the outermost layer of the sun? photosphere corona core radiative zone chromosphere convective zone
murzikaleks [220]
The answer is Corona 
7 0
3 years ago
Read 2 more answers
A student makes a short electromagnet by winding 300 turns of wire around a wooden cylinder of diameter d 5.0 cm. The coil is co
kupik [55]

Answer:

A) μ = A.m²

B) z = 0.46m

Explanation:

A) Magnetic dipole moment of a coil is given by; μ = NIA

Where;

N is number of turns of coil

I is current in wire

A is area

We are given

N = 300 turns; I = 4A ; d =5cm = 0.05m

Area = πd²/4 = π(0.05)²/4 = 0.001963

So,

μ = 300 x 4 x 0.001963 = 2.36 A.m².

B) The magnetic field at a distance z along the coils perpendicular central axis is parallel to the axis and is given by;

B = (μ_o•μ)/(2π•z³)

Let's make z the subject ;

z = [(μ_o•μ)/(2π•B)] ^(⅓)

Where u_o is vacuum permiability with a value of 4π x 10^(-7) H

Also, B = 5 mT = 5 x 10^(-6) T

Thus,

z = [ (4π x 10^(-7)•2.36)/(2π•5 x 10^(-6))]^(⅓)

Solving this gives; z = 0.46m =

3 0
3 years ago
The fixed hydraulic cylinder C imparts a constant upward velocity v = 2.2 m/s to the collar B, which slips freely on rod OA. Det
Olenka [21]

Answer:

so angular velocity is 7.13128 sec−1

Explanation:

velocity v = 2.2 m/s

displacement s = 220 mm = 0.220 m

distance d = 510 mm = 0.510 m

to find out

angular velocity

solution

we know that

angular velocity will be velocity ( v)  / (displacement²  +  distance²)   .....1

now put all these value in equation 1 and we get angular velocity i.e.

angular velocity =  velocity ( v)  / (displacement²  +  distance²)

angular velocity = 2.2  / (0.22²  +  0.51²)

angular velocity = 2.2 / 0.3085

angular velocity = 7.13128

so angular velocity is 7.13128 sec−1

6 0
3 years ago
A proton is initially at rest. After some time, a uniform electric field is turned on and the proton accelerates. The magnitude
marusya05 [52]

Answer:

a) 8.83*10⁵ m/s  b) 2.80*10⁶ m/s

Explanation:

a) Assuming no other forces acting on the proton, the acceleration on it is produced by the electric field.

By definition, the  force due to the electric field is as follows:

F = q*E = e*E (1)

where e is the elementary charge, the charge carried by only one proton, and is e = 1.6*10⁻¹⁹ C.

According to Newton's 2nd law, this force is at the same time, the product of the mass of the proton, times the acceleration a:

F = mp*a (2)

From (1) and(2), being left sides equal, right sides must be equal too:

F = e*E = mp*a

Solving for a:

a = \frac{e*E}{mp} =\frac{1.6e-19C*1.36e5N/C}{1.67e-27kg} =1.3e13 m/s2

⇒ a = 1.3*10¹³ m/s²

As we have the value of a (which is constant due to the field is uniform), the displacement x, and we know that the initial velocity is 0, in order to get the value of the speed, we can use the following kinematic equation:

vf^{2} -vo^{2} = 2*a*x

Replacing by v₀ = 0, a= 1.3*10¹³ m/s² and  x = 0.03 m, we can find vf as follows:

vf =\sqrt{2*(1.3e13 m/s2)*0.03m} = 8.83e5 m/s

⇒ vf = 8.83*10⁵ m/s

b) We can just repeat the equation from above, replacing x=0.03 m by x=0.3 m, as follows:

vf =\sqrt{2*(1.3e13 m/s2)*0.3m} = 2.80e6 m/s

⇒ vf = 2.80*10⁶ m/s

4 0
3 years ago
Other questions:
  • If a force does not act parallel to the resulting displacement, what is the effect on the work done by the force? 
    7·1 answer
  • Suppose you walk 12.5 m in a direction exactly 19° south of west then you walk 19.5 m in a direction exactly 39° west of north.
    9·1 answer
  • Which statement is true regarding the relationship between distance and displacement? A) Distance and displacement are always eq
    11·2 answers
  • A driver starts from rest on a straight test track that has markers every 0.14 km. The driver presses on the accelerator and for
    12·1 answer
  • Can a goalkeeper at his goal kick a soccer ball into the opponent’s goal without the ball touching the ground? The distance will
    8·1 answer
  • A 12 V battery is connected to a 1200 Ω resistor. How much current is flowing through the resistor?
    7·1 answer
  • Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply banked.
    11·1 answer
  • A blue train of mass 50 kg moves at 4 m/s toward a green train of 30 kg initially at rest. The trains collide. After the collisi
    14·1 answer
  • Describe any major landmarks (buildings, bridges, historical sites, etc.) that were destroyed during the valdivia earthquake.
    14·1 answer
  • A wire has a cross sectional area of 4.00 mm2 and is stretched by 0.100 mm by a certain force. How far will a wire of the same m
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!