4.0 ilynits per second Alaskan es muy du facial in the oscillates 1.99
Answer:
(a). The average daily demand of this subdivision is 2444.44 gallon/min.
(b). The design-demand used to design the distribution system is 2444.44 gallon/min.
Explanation:
Given that,
Area = 1100 acres
Number of house in 1 acres = 4


Per house water demand = 800 g/day/house
(a). We need to calculate the average daily demand of this subdivision
Using formula for average daily demand





The average daily demand of this subdivision is 2444.44 gallon/min.
(b). We need to calculate the design-demand used to design the distribution system
Using formula for the design-demand



Hence, (a). The average daily demand of this subdivision is 2444.44 gallon/min.
(b). The design-demand used to design the distribution system is 2444.44 gallon/min.
Answer:
Explanation:
wouldnt it just be x=0 sorry if im
wrong
Answer:
for -12db

for 3db

for 10db

for 0db

Explanation:
The decibel is a logaritmic value given by:

we use 10 for power values and 20 for other values such voltages or currents.

for -12db

for 3db

for 10db

for 0db

Answer:
p = mv
Explanation:
- The momentum of a body is defined as the product of its mass and velocity. Its physical symbol is 'p'.
- The formula for momentum is given by
p = mv
Where,
m - the mass of the body in kg
v - velocity of the body in m/s
- Therefore, the unit of momentum is expressed as the kg m/s
- The momentum of a body is always associated with its motion. It is a vector quantity and it is directed in the direction of the velocity vector.
- If a body is at rest, the momentum associated with the body is zero.
- The momentum plays a significant role in the kinematics of the body. As similar to the energy conservation law, the total momentum of the body is conserved.