Answer:
11.9 is the pOH of a 0.150 M solution of potassium nitrite.
Explanation:
Solution : Given,
Concentration (c) = 0.150 M
Acid dissociation constant = 
The equilibrium reaction for dissociation of
(weak acid) is,

initially conc. c 0 0
At eqm.

First we have to calculate the concentration of value of dissociation constant
.
Formula used :

Now put all the given values in this formula ,we get the value of dissociation constant
.



By solving the terms, we get

No we have to calculate the concentration of hydronium ion or hydrogen ion.
![[H^+]=c\alpha=0.150\times 0.0533=0.007995 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%3D0.150%5Ctimes%200.0533%3D0.007995%20M)
Now we have to calculate the pH.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


pH + pOH = 14
pOH =14 -2.1 = 11.9
Therefore, the pOH of the solution is 11.9
567000 would be in grams, hope this helps :)
Answer:
Hello, there!
In order to solve problems like this DO PEMDAS
The Exponent:
So, equals 4
Your problem becomes
Now we have to do what is in the (
( the is a )
And
Problem becomes
So, this means that your answer would be
Good luck on your assignment and enjoy your day!
kjExplanation:
Answer:
See below ~
Explanation:
The calculated values of V/n :
⇒ 1.5/0.3 = 5
⇒ 3/0.6 = 5
⇒ 4.5/0.9 = 5
⇒ 6/1.2 = 5
⇒ 7.5/1.5 = 5
1. From this we understand that the calculated values of V/n remain constant, equal to <u>5</u> in this case.
2. The volume-mole graph will be a straight line passing through the origin. (Attached below)
When the phosphate groups of the single nucleotides combine to form the backbone of the nucleic acid, energy is released. This energy is used for polymerization.