When a boy throws a ball and accidentally breaks a window, the momentum of the ball and all the pieces of glass taken together after the collision is THE SAME as the momentum of the ball before the collision
hope this helps
- The Solar System contains the sun and objects that orbit it, including the eight planets, comets, and asteroids, and the Galaxy contains about 100 billion stars, of which the sun is one, as well as large clouds of gas and dust. - The universe contains all physical matter and energy
So Therefore Universe Is the biggest terms of size because it contains all physical matter and energy hope it helps
To solve this problem we will apply the concepts related to the Force of gravity given by Newton's second law (which defines the weight of an object) and at the same time we will apply the Hooke relation that talks about the strength of a body in a system with spring.
The extension of the spring due to the weight of the object on Earth is 0.3m, then


The extension of the spring due to the weight of the object on Moon is a value of
, then

Recall that gravity on the moon is a sixth of Earth's gravity.




We have that the displacement at the earth was
, then


Therefore the displacement of the mass on the spring on Moon is 0.05m
Quantum Theory is commonly related to Quantum Mechanics, or the physics of sub-atomic particles. Quantum Theory defines the theories or educated ideas behind Quantum Mechanics. I believe this is the answer you are looking for.
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2