It produces only virtual images is the answer
Answer:
distance between the two second-order minima is 2.8 cm
Explanation:
Given data
distance = 1.60 m
central maximum = 1.40 cm
first-order diffraction minima = 1.40 cm
to find out
distance between the two second-order minima
solution
we know that fringe width = first-order diffraction minima /2
fringe width = 1.40 /2 = 0.7 cm
and
we know fringe width of first order we calculate slit d
β1 = m1λD/d
d = m1λD/β1
and
fringe width of second order
β2 = m2λD/d
β2 = m2λD / ( m1λD/β1 )
β2 = ( m2 / m1 ) β1
we know the two first-order diffraction minima are separated by 1.40 cm
so
y = 2β2 = 2 ( m2 / m1 ) β1
put here value
y = 2 ( 2 / 1 ) 0.7
y = 2.8 cm
so distance between the two second-order minima is 2.8 cm
Energy Produced by water and heatfrom the inner core of the earth of the earth
Answer:
Mars
Explanation:
In the 1960s, humans set out to discover what the red planet has to teach us. Now, NASA is hoping to land the first humans on Mars by the 2030s. Mars has captivated humans since we first set eyes on it as a star-like object in the night sky.
good luck
please mark me as a brainliest
Answer:
The magnitude of the net force F₁₂₀ on the lid when the air inside the cooker has been heated to 120 °C is 
Explanation:
Here we have
Initial temperature of air T₁ = 20 °C = 293.15 K
Final temperature of air T₁ = 120 °C = 393.15 K
Initial pressure P₁ = 1 atm = 101325 Pa
Final pressure P₂ = Required
Area = A
Therefore we have for the pressure cooker, the volume is constant that is does not change
By Chales law
P₁/T₁ = P₂/T₂
P₂ = T₂×P₁/T₁ = 393.15 K× (101325 Pa/293.15 K) = 135,889.22 Pa
∴ P₂ = 135.88922 KPa = 135.9 kPa
Where Force =
we have
Force =
.