To find this, we will use this formula:
Molar mass of element
------------------------------------ x 100
Molar mass of compound
So, first lets calculate the mass of the compound as a whole. We use the atomic masses on the periodic table to determine this.
Ca: 40.078 g/mol
N2 (there is two nitrogens): 28.014 g/mol
O6 (there are six nitrogens: 3 times 2): 95.994 g/mol
When we add all of those numbers up together, we get 164.086. That is the molar mass for the whole compound. However, we are trying to figure out what percent of the compound oxygen makes up. From the molar mass, we know that 95.994 of the 164.086 is oxygen. Lets plug those numbers into our equation!
95.994
-----------
164.086
When we divide those two numbers, we get .585. When we multiply that by 100, we get 58.5.
So, the percent compostition of oxygen in Ca(NO3)2, or, calcium nitrate, is 58.5%.
Atoms have no electric charge because the protons and electrons "cancel out" each others charges. Neutrons have no charge. What is the atomic number of an element? The atomic number is the number of protons in the atom's nucleus.
Hope this helps have a great day :)
The correct answer is Solute
Explanation:
In chemistry, a solution refers to a homogenous mixture of two substances that occurs through dissolution, this means once they are mixed the substances form a uniform new substance and cannot be easily separated. Additionally, in chemistry, the substances involved in a solution are either classified as solutes if they are the substances that dissolve to form a solution or as solvents in the case of substances in which the solute dissolves in. For example, if you mix salt and water, the salt acts as the solute while the water is the solvent. Thus, the component which dissolves in a solution is called the solute.
Answer:
3.67 moles of N
Explanation:
The epinephrine's chemical formula is: C₉H₁₃O₃N
We were told that a chemist found that in a mesaure of epinephrine, he found 33 moles of C
We must know that 9 moles of C are in 1 mol of C₉H₁₃O₃N so, let's make a rule of three:
If 9 moles of C are found in 1 mol of C₉H₁₃O₃N
Therefore 33 moles of C must be found in (33 .1) / 9 = 3.67 moles of C₉H₁₃O₃N
There is a second rule of three, then.
In 1 mol of C₉H₁₃O₃N we have 1 mol of N
Then, 3.67 moles C₉H₁₃O₃N must have (3.67 . 1) / 1 = 3.67 moles of N
Remember 1 mol of C₉H₁₃O₃N has 9 moles of C, 13 moles of H, 3 moles of O and 1 mol of N
Mass of X₂O₇ = 54,9g
2x + 33,6g = 54,9g
2x = 54,9g - 33,6g
2x = 21,3g | :2
x = 10,65g/mol